
Curriculum Guide

Mission Pack:
Python with Robots

Python with Robots

Table of Contents
Python with Robots Overview 2

Unit 1 Overview 3

Mission 1: Welcome 4

Mission 2: Introduction to CodeBot 5

Mission 3: Time and Motion 7

Unit 1 Remix Project and Exam 9

Unit 2 Overview 12

Mission 4: Animatronics 13

Mission 5: Fence Patrol 15

Unit 2 Remix Project and Exam 17

Unit 3 Overview 21

Mission 6: Line Follower 22

Mission 7: Hot Pursuit 24

Unit 3 Remix Project and Exam 26

Unit 4 Overview 30

Mission 8: Navigation 31

Mission 9: All Systems Go! 33

Unit 4 Remix Project and Exam 35

Final Project 39

Appendix A: Required Resources 44

Appendix B: Our Approach 45

Appendix C: Teacher Resources 46

Appendix D: Assessing Student Projects 48

Appendix E: Links to Teacher Materials 51

Appendix F: Lab Data Sheets 53

–1–

Python with Robots

Python with Robots Overview
Designed as a Computer Science elective course for grades 8-12, this curriculum module
covers the fundamentals of Python programming as students apply each new coding skill
and concept to engaging projects with CodeBot. No prior coding experience is required!
This 'bot puts the focus on coding, with built-in sensors and programmable controls
for endless projects and learning opportunities.

Pre-Mission Assignment (5-10 hours)
If your students come with no Computer Science background, it is important to start by building a
foundation of computational thinking. Dedicate some time for students to learn basic terms, such
as algorithm, program, and debug. See the Firia Labs collection of Unplugged Activities at
https://learn.firialabs.com/curricula/cs-unplugged.

Mission 1: Welcome
Take a tour of the CodeSpace Development Environment

Mission 2: Introducing CodeBot
Get to know your friendly neighborhood CodeBot!

Mission 3: Time and Motion
Power up the CodeBot. Get it moving in a square.

Mission 4: Animatronics
Create an “Animatronic Robot Exhibition” by utilizing the ‘bot’s speakers.

Mission 5: Fence Patrol
Stay between the lines to gain an in-depth understanding of CodeBot’s line sensors.

Mission 6: Line Follower
Tune up your Line Sensors and hit the road on the biggest and baddest line-course around.
Can your Python code master this challenge?

Mission 7: Hot Pursuit
Go in-depth with the proximity sensors and write code to detect, pursue, and avoid objects.

Mission 8: Navigation
Learn to navigate by moving a specific direction, distance, and speed from a known location
using the CodeBot’s wheel encoders.

Mission 9: All Systems Go!
Explore CodeBot’s internal sensor systems by creating a battery tester, temperature
measurement tool, and alarm bot!

–2–

https://learn.firialabs.com/curricula/cs-unplugged

Python with Robots

Unit 1: Getting Started (7-14 hours)
Students will learn about the programming environment, the CodeBot, and basic commands for
programming the CodeBot using Python. Students create their own program to move the ‘bot in a simple
shape, like a square and use button presses for input.

Summary of Mission 1:

Students start by completing the attitude survey. They create an account and join the class to
access the curriculum. The mission will let them become familiar with CodeSpace.

Summary of Mission 2:

Then they learn about CodeBot, its peripherals, and proper care. Basic code, like importing a
module and turning on an LED is introduced.

Summary of Mission 3:

Students learn several concepts and skills during this mission. First, the instructions go into depth
about the LEDs and turning them on and off. There are three sets of LEDs on the ‘bot that can be
controlled. Binary is introduced and how to use it in code to turn on/off LEDS. Students also learn
about variables and how to use them in code. Finally, students learn how to turn on the motors and
move the wheels both forwards and backwards. The mission ends with conditions and determining
if a button was pressed. Since this mission covers many terms, concepts and coding statements,
three review Kahoots were created.

Preparation and Materials:

● Create a class on the teacher dashboard.
● Students need a computer / laptop with the Chrome web browser.
● Make sure the students can successfully login to http://make.firialabs.com,
● Students create a student account and join the class with the code.
● Each student (or pair) needs a CodeBot and connecting cable.
● A ruler for measuring the distance traveled by the ‘bot.

Assessment:

Mission 2 Review Kahoot Mission 3 Obj. 1-6 Kahoot Mission 3 Obj 7-9 Kahoot Mission 3 Obj 10-11 Kahoot

U1 Vocab Review Kahoot U1 Coding Review Kahoot U1 Vocab Test (MS Form) U1 Coding Test (MS Form)

Standards addressed in this unit:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-03
● 2-AP-10
● 2-AP-11
● 2-AP-13
● 2-AP-19

● 3A-CS-03
● 3A-AP-13
● 3A-AP-16
● 3A-AP-19
● 3A-AP-21

● 3B-AP-17

–3–

http://make.firialabs.com
https://create.kahoot.it/share/firia-labs-codebot-mission-2/2925c213-a0c5-4ed4-8efa-45dc8d9db0e7
https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-1-6/d53e34d5-56ab-4962-a9e4-a6075bb90954
https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-7-9/ced9ca2e-c1c1-4779-8494-68e27eaa52db
https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-10-11/68a85b45-3616-4657-ad5d-472632455efd
https://create.kahoot.it/share/firia-labs-codebot-unit-1-vocab-review/0971b640-bebc-4ca7-8745-54f7f814521b
https://create.kahoot.it/share/firia-labs-codebot-unit-1-coding-review-missions-1-3/080d70c6-365a-4440-9a95-7bba5b59eaa9
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUOE8yNFFBTzc3QVJIUUw2Rks5SVRZTkM3My4u&sharetoken=L3TGIhhBvcIMRlkwJShW
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUMTlRN0dCTjUzNTE5RkZOWlBHSVRYSFBYQi4u&sharetoken=VqKjBU4zaYS4oLgxkWmD

Python with Robots

Mission 1:Welcome Time Frame: 1 hour

Project Goal: Students will learn about the
CodeSpace learning environment.
Learning Targets

● I can navigate CodeSpace.
● Identify major parts of the Codespace interface:

Mission Bar, Objective Panel, text editor, CodeTrek,
Toolbox, and Lesson Navigation Controls

Key Concepts
● Follow instructions in the Lesson Panel

carefully. There is a lot of important reading!
● Look for “tool icons” to collect tools in your

Toolbox as you go.

Assessment Opportunities
● Checkpoint 1.3 (toolbox) can be used as an exit

ticket.
● Quiz after Objective 4.
● Print a picture of CodeSpace and have

students label the parts.

Success Criteria
Navigate CodeSpace
Identify major features of the CodeSpace
interface: Editor panel, Lesson panel, Toolbox,
CodeTrek, Hints

Vocabulary
● Browser: Software that displays web pages
● Cloud: A place to save files and data through the Internet
● Objective: The steps in the mission; has a goal to accomplish
● Text editor:Where you type the code
● Code: Instructions to the computer
● Toolbox: A place in CodeSpace to keep information you learn about programming concepts so you can

use it later when you need the information
● Simulation: A 3D environment that lets you see the robot move and interact in a virtual world

New Python Code

Real World Applications
Programmers need to use some type of text editor to create their code. CodeSpace is an IDE, or integrated
development environment. It is patterned after other popular IDEs.

Teacher Notes:
● This lesson is the first lesson in all the mission

packs. If your students have completed other
mission packs with other physical devices, they
will already know the information. You can
choose to have them complete the mission as a
review and refresher, or you can unlock the
next mission.

Extensions / Cross-Curricular

–4–

Python with Robots

Mission 2: Introducing CodeBot Time Frame: 1-2 hours

Project Goal: Students will learn about the
peripherals of CodeBot and the basics of Python.
Learning Targets

● I can identify the main components of the
CodeBot.

● I can safely connect and disconnect the
CodeBot using the USB cable.

● I can create a new file.
● I can write code using the conventions of

comments and correct punctuation.

Key Concepts
● There are a lot of hardware peripherals on the

CodeBot, including sensors, LEDs, motors,
buttons, and a speaker.

● Python requires all objects – variables,
peripherals, etc. – to be spelled exactly the
same; capitalization matters!

● Adding comments and blank lines in your
code makes it easier to read.

Assessment Opportunities
● Print a picture of the CodeBot and have

students label the parts.
● Quiz after Objective 5.
● Exit ticket: What is the first index?
● Submit program after Objective 10.
● Mission 2 Review Kahoot

Success Criteria
Identify the parts of the CodeBot
Create a new file
Import the botcore library and turn on an LED
Use descriptive comments

Vocabulary
● CodeBot: A computer on wheels with lots of sensors and controls built-in
● Peripherals: Devices that give input or output to the CodeBot; they include LED lights, speaker, motors,

line sensors, proximity sensors, an accelerometer and push buttons
● Motors: Programmable electric engines; powers the wheels
● LEDs: Light emitting diodes; tiny and efficient electronic components that produce light
● Wheel encoders: Discs that rotate, counting the invisible IR light beam pulses through its slots
● Static electricity: A charge that can build up and causes a jolt and spark when grounded
● Comment: Notes in a program code that don’t get executed (more information in Mission 3)
● Import: Provides access to a module, or library, of built-in Python functions to use in your code

New Python Code

From botcore import leds Import from botcore only leds functions

leds.user_num(0, True) Turn on one user LED (parameters are LED number 0-7, True=on, False=off)

leds.ls_num(0, True) Turn on a line sensor LED (parameters are LED number 0-4, True/False)

Real World Applications
Make sure each student takes the time to personally inspect their ‘bot. Discuss the fact that all the electronic
devices they use have similar circuit boards inside. The tools and techniques they’re learning apply to all the
electronic devices they use every day! Challenge students to name a few devices they use every day that might
contain computer chips or “microcontrollers” such as the one on the ‘bot. How many of the following do they think
of? There are so many more!

Microwave oven Cell phone Automobile Watch or fitness tracker

Video game controller Refrigerator Home thermostat Coffee maker

Bread machine Alarm system Automatic garage doors Electronic locks

Challenge students to describe how our lives are impacted by the above technology, and to compare how related
tasks were done before computer technology was invented.

–5–

https://create.kahoot.it/share/firia-labs-codebot-mission-2/2925c213-a0c5-4ed4-8efa-45dc8d9db0e7

Python with Robots

Teacher Notes
● Review “input” and “output”. For each

peripheral, discuss if it is used for input or
output.

● Lab sheets and a flowchart are available.
● Discuss common programming practices, such

as descriptive variable names, adding
comments and blank lines, use of capital
letters, etc.

● Discuss real-world applications, either at the
beginning of the lesson or at the end of the
lesson.

Extensions / Cross-Curricular
● Make a list of common input and output

devices.
● LANGUAGE ARTS: Students write about

technology today and its impact.
● SCIENCE: Students research a microcontroller

or other every day device.
● SCIENCE: Have a lesson on LEDs and light.

–6–

https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials#lab-sheets
https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials#flow-charts

Python with Robots

Mission 3: Time and Motion Time Frame: 2-6 hours

Project Goal: Students will learn the basics of Python
Learning Targets

● I can use the “Step” feature to debug a
program.

● I can use binary values to animate the LEDs.
● I can use comments to explain my code.
● I can assign data to a variable.
● I can use variables to make code more

efficient.
● I can write an if:elif:else conditional statement.
● I can use a button to control the ‘bot.

Key Concepts
● Computers execute code in sequential steps.
● The CodeSpace debugger lets you step

through the code one line at a time to
understand what the computer is doing.

● Built-in functions come from libraries, like
botcore or time.

● Variables can be defined to hold changing
values.

● Branching with if:elif:else statements controls
the flow of the program.

● The colon (:) at the end of an if statement
introduces a new block of code. Everything
inside the block should be indented at the
same level.

Assessment Opportunities
● Quiz after Objective 6
● Submit the “SequenceLEDs” program
● Create a binary numbers quiz (5-digit & 8-digit)
● Submit the “Binary LEDs” program
● Submit the “MoveOut” program
● Flowchart or pseudocode for square
● Obj. 1-6 review Kahoot
● Obj 7-9 review Kahoot
● Obj 10-11 review Kahoot
● Submit final “NavSquare” program

Supplemental Lab Data Sheets (see appendix)
● Obj 7 Get Moving and Obj 8 Rotation Time

Success Criteria
Learn how to use the CodeSpace debugger
Flash CodeBot’s LEDs in a controlled sequence
Use the motors to move and rotate the ‘bot
Plan a program using a flowchart or
pseudocode
Incrementally test code
Write code to drive in a specified pattern
Use if:elif:else conditional statements to
perform actions based on conditions

Vocabulary
● Physical computing:Writing code (instructions) for a physical device, like CodeBot or cars
● Editor shortcuts: Keyboard hotkeys to write code faster; combinations of keys which complete a task
● CPU: The “brain” of the computer that executes your code; the Central Processing Unit
● Debugging: The process of understanding what the computer is actually doing and then changing the

code to do what you want it to do
● Delay: Functions that slow things down, like sleep(); the module must be imported first
● Blocking functions: Functions that pause program execution; no other code will run during the pause
● Literal: An actual value, like 1 or “hello” or True
● Variable: A name to which you assign some data, any type of information your program uses; must be

defined before it is used
● Boolean: A value that is either True or False
● Argument: Passing data to a function, determined by the position in the list when the function is called;

arguments can be literal values, like True, or variables, like delay
● Binary: How a computer deals with digits; electrical connections, like switches, that are either on or off
● Byte: 8 bits of binary data
● Comments: Notes in the code about what you are doing; increases the readability of code and is meant

for humans, not the computer (they are not instructions to the computer and are not executed)
● Whitespace: Adding blank lines and space around symbols to make the code more readable (ignored by

Python, non-executable)
● Algorithm: A precise sequence of instructions that the computer can follow exactly, one step at a time, to

complete a task or solve a problem
● Control flow branching: Decision points in code; code will take a different branch or path depending on a

condition

–7–

https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-1-6/d53e34d5-56ab-4962-a9e4-a6075bb90954
https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-7-9/ced9ca2e-c1c1-4779-8494-68e27eaa52db
https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-10-11/68a85b45-3616-4657-ad5d-472632455efd

Python with Robots

● Condition: A Boolean value (True or False), often the result of a comparison operator like <, >, or ==. Use
an if statement, optionally followed by an elif or else, for branching

● Indenting: A way to structure blocks of code by offsetting a block of code four spaces; blocks of code are
indented following a defining statement with a colon (:)

New Python Code

from time import sleep Import the ability to delay

sleep(1.0) Use sleep() – will sleep the amount of time in seconds

delay = 1.0 Define a variable (define variables near the top just under the imports)

sleep(delay) Use a variable with sleep()

leds.user_num(2, False) Turn off an LED

leds.user(0b10101010) Use binary designation for turning on LEDs (0b for binary, then 0=off,
1=on for each LED)

from botcore import * Import an entire library (* is a wildcard, which means everything)

motors.enable(True) Turn on motors, must be done before motors will turn and wheels move

motors.run(LEFT, 50) Turn left wheel forward at 50% power (use -50 for backward movement)

motors.enable(False) Turn off motors

buttons.was_pressed(0) Returns Boolean value – True if pressed, False if not pressed

if buttons.was_pressed(0):
elif buttons.was_pressed(1):

Use button press in branching

Real World Applications
You’ve used some fundamental computer science and robotics principles:

● Controlling LEDs and motors with specific timing and sequencing
● Reading button inputs

This code is used in cars, stage lights, espresso machines, music sequencers, electric toothbrushes, and more!

Teacher Notes
● When you get to algorithms, you will need to

stop and plan out the program with flowcharts
or pseudocode. When testing, have tools, like
tape and ruler, ready to go.

● As students test their code, have them change
only ONE variable at a time. They can use the
Lab Data Sheet to record their findings.

● As the robot performs the square, discuss
factors that could affect performance, like
battery power, type of surface, etc.

● There is a lot to the NavSquare program. You
could potentially spread this out over several
days in order to cover all the concepts
embedded in this simple program.

Extensions / Cross-Curricular
● Instead of clockwise and counterclockwise

squares, move the ‘bot in a large square and a
small square

● Move the ‘bot in a square and a diamond
● Move the ‘bot in a square and a rectangle
● CHALLENGE: Move the robot in a circle
● MATH: Use the ‘bot and your lab data sheet to

predict where the robot will go, given specific
instructions. Then test it out.

● MATH: Draw a graph of the data from the lab
data sheet.

–8–

https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials#flow-charts

Python with Robots

Unit 1 Remix Project and Exam Time Frame: 2-5 hours

Remix Project Goal: Students will use the skills and
concepts they learned in the first three missions to
create their own project.

Remix Project Outline: Follow the five-steps of the
design process (document on next page) to design a
remix project.

Remix Project Assessment Opportunities
● Peer reviews / Gallery walk
● Remix 1 Log Planning Guide
● Remix Rubric Checklist
● Submit Remix Program

Unit 1 Exam Opportunities
● Unit 1 Vocabulary review Kahoot
● Unit 1 Concepts and coding review Kahoot
● Unit 1 Vocabulary test (MS Form)
● Unit 1 Concepts & coding test (MS Form)

Remix Project Ideas:
● Pick an extension idea from Mission 3.
● Use the binary designation for turning on LEDs, and combine that with ‘bot movement.
● Light up different LEDs as the ‘bot moves, to indicate what the movement is.
● Program the ‘bot like a remote control – when one button is pressed, it moves one way, and a different

way for the other button.
● Think of your own creative project with movement and LEDs and button input.

Remix Rubric Checklist:
Filename is descriptive
Uses one or more variables, each with a descriptive name
Moves the CodeBot forward and/or backward one or more times
Turns the CodeBot one or more times
Stops the CodeBot
Uses a sleep delay one or more times
Turns on one or more LED lights
Uses one or two buttons as input
Includes comments and whitespace for readability
Code follows programming conventions of indenting, punctuation and capitalization
Code runs with no errors

–9–

https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials#remix-logs
https://create.kahoot.it/share/firia-labs-codebot-unit-1-vocab-review/0971b640-bebc-4ca7-8745-54f7f814521b
https://create.kahoot.it/share/firia-labs-codebot-unit-1-coding-review-missions-1-3/080d70c6-365a-4440-9a95-7bba5b59eaa9
https://docs.google.com/document/u/0/d/1Csckd5t1ugGnfsHDGn6Pe74aoEH1UghtBEmTyg1Oxs8/edit
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUMTlRN0dCTjUzNTE5RkZOWlBHSVRYSFBYQi4u&sharetoken=VqKjBU4zaYS4oLgxkWmD

Python with Robots

Unit 1 Remix Log Name:

Remix Step 1: Review your code from Mission 3

Mission 3: Time and Motion
What does this program do?

What programming concepts did you learn
and use?

Remix Step 2: Remix Project Concept

Look over the remix suggestions. Discuss
with a partner. Then decide what you want
to do for your remix project. Describe what
your remix project will do:

Remix Step 3: Plan your code. What variables will you use in the project?
Fill out the charts below. Use another piece of paper to design your program with a flowchart or pseudocode.

What variables will you use in the project?
Fill in the chart. You do not need to fill in
every line, or you can add more.

Variable Name What it will be used for:

What buttons will you use, and what will
happen when pressed?

Button What will happen:

Remix Step 4: Write your code

Use the sandbox when you write the code. Write just a few lines at a time and test often.

Remix Step 5: Commenting and feedback

Documentation ● Make sure your code is readable by adding blank lines
● Add comments to explain sections of code

–10–

Python with Robots

Peer feedback: Get feedback from two (or more) people. You can be one of the peer reviewers.

Peer Review #1 Name:

Go through the checklist. Are all
requirements met? If not, list any missing
criteria.

What do you like about the program – be
specific!

Give at least one suggestion. Begin with
“what if” or “maybe you could”

Peer Review #2 Name:

Go through the checklist. Are all
requirements met? If not, list any missing
criteria

What do you like about the program – be
specific!

Give at least one suggestion. Begin with
“what if” or “maybe you could”

Review the comments. Then take time to improve or add to your project.

Post-Mission Reflection

What did you change in your project after
reading the feedback?

What did you learn about programming
from completing this project?

Rubric Checklist:
Filename is descriptive
Uses one or more variables, each with a descriptive name
Moves the CodeBot forward and/or backward one or more times
Turns the CodeBot one or more times
Stops the CodeBot
Uses a sleep delay one or more times
Turns on one or more LED lights
Uses one or two buttons as input
Includes comments and whitespace for readability
Code follows programming conventions of indenting, punctuation and capitalization
Code runs with no errors

–11–

Python with Robots

Unit 2: Inputs and Outputs (10-18 hours)
Students continue their programming journey by combining LED lights, movement and sound. They will
learn about loops and creating and calling functions. CodeBot will interact with its environment using line
sensors.

Summary of Mission 4:

Students are given the assignment to create an animatronic robot exhibit for a major theme park. It
has some specific requirements. The first concept is an infinite loop used to flash the user lights in
a cool pattern. Students learn about updating a variable and breaking out of a loop. Then they
learn about using the speaker for making beeps and using random numbers. During this mission
students also learn about while loops with a counter and use a button press for counting.

Summary of Mission 5:

Students learn about and use line sensors in code. Since CodeBot has 5 sensors, functions and
loops are used to simplify and reuse code to access all line sensors and their LEDs. The code uses
Boolean conditions and variables, and return functions. By the end of the mission, movement is
added to line sensor input to keep the ‘bot inside the lines of a fence.

Preparation and Materials:

● Students need a computer / laptop with the Chrome web browser.
● Make sure the students can successfully login to http://make.firialabs.com
● Students login with their account (possibly using their gmail account)
● Each student (or pair) needs a CodeBot and connecting cable.
● A metric ruler for measuring the distance traveled by the ‘bot.
● Tape for a boundary that the ‘bot stays within (needs to be the opposite color of the floor).

Assessment:

Mission 4 Obj. 1-5 Review Kahoot Mission 4 Obj. 6-12 Review Kahoot Mission 5 Review Kahoot

Unit 2 Vocab Review Kahoot Unit 2 Coding Review Kahoot U2 Vocab Test / Coding Test (MS Forms)

Standards addressed in this unit:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-02
● 2-CS-03
● 2-AP-10
● 2-AP-11
● 2-AP-12
● 2-AP-13
● 2-AP-14
● 2-AP-15
● 2-AP-16
● 2-AP-17
● 2-AP-19

● 3A-CS-02
● 3A-CS-03
● 3A-AP-13
● 3A-AP-16
● 3A-AP-17
● 3A-AP-18
● 3A-AP-19
● 3A-AP-21
● 3A-AP-22

● 3B-CS-02
● 3B-AP-14
● 3B-AP-16
● 3B-AP-17
● 3B-AP-22
● 3B-AP-23

–12–

http://make.firialabs.com
https://create.kahoot.it/share/firia-labs-codebot-mission-4-obj-1-5/274224e8-9c7f-42bb-a648-c9b334bb7cfe
https://create.kahoot.it/share/firia-labs-codebot-mission-4-obj-6-12/1b909d22-067e-4135-ac7f-bba9273c70ad
https://create.kahoot.it/share/firia-labs-codebot-mission-5/20d9499d-fe50-45a7-9f2c-623975832277
https://create.kahoot.it/share/firia-labs-codebot-unit-2-vocabulary-review-missions-4-5/456e14e6-6a4f-43b5-91b3-d6af75397a6c
https://create.kahoot.it/share/firia-labs-codebot-unit-2-coding-review-missions-4-5/c68432d2-742d-4879-b4d6-3378aae37ddb
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUMjdJOUFWR1dJNkpGS0hGSTBGT1pBVElQSy4u&sharetoken=PILrd6Q9jqAean5Hems3
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUQUU3WVBPMkNBVTlCVkk4N1UxTkNYWFJITi4u&sharetoken=iQnzUMafV3sPsIFSgvjx

Python with Robots

Mission 4: Animatronics Time Frame: 4-6 hours

Project Goal: Students will create an Animatronic
robot exhibit based on customer requirements.
Learning Targets

● I can plan a project using a flowchart or
pseudocode.

● I can use a while True: loop.
● I can increment a counter variable.
● I can use buttons.was_pressed to control a

variable.
● I can write a function.
● I can import the random library and use it to

generate random numbers.

Key Concepts
● While loops are used to execute an algorithm

constantly.
● Increments (and decrements) are used for

updating variables like counters.
● Button presses (inputs), LEDs (outputs) and

speaker sounds (outputs) are part of the user
interface. They allow the user to interact with
the CodeBot.

● Python’s random library makes it easy to work
with random numbers.

● A function is a named chunk of code you can
run anytime by calling its name.

Assessment Opportunities
● Quiz after Objective 7
● Submit flowchart or pseudocode for the project
● Map out a fanfare with different notes
● Give a code review worksheet with code

segments that include incrementing and loops.
Have students trace the code.

● Obj. 1-5 review Kahoot
● Obj 6-12 review Kahoot
● Submit final “SweepLEDs” program

Success Criteria
Create a flowchart or pseudocode that includes
all elements from the napkin sketch.
Use loops correctly to blink LEDs until a break.
Use an increment to light LEDs in sequence.
Use an increment to count button presses.
Use randrange to play a random pitch.
Define a function to play a single note.
Execute all elements from the napkin sketch.

Vocabulary
● Loop: Changing the flow of the code by repeating a block of code, subject to a condition.
● While condition: A statement that tells Python to repeat the block of code as long as the given condition

is true.
● Infinite loop: A loop that never ends because the condition is always true.
● Updating a variable: Assign a new value to a variable, based on the old value.
● Increment: Update a variable by adding one (or a specific number) to the old value.
● Single equal (=): Assignment symbol – used to assign a value to a variable.
● Double equal (==): Comparison operator to determine if two objects are the same.
● Break: Exit the nearest enclosing loop.
● Debounce: Reset the internal status of a button so the press isn’t counted twice.
● While loop: A loop that iterates, or repeats, while a condition is true.
● Parameter: A list of names declared in a function definition that receive values when the function is called

and act like local variables in the function.
● Random number:When using randrange, a range of numbers is given (start, stop). The random number

will include the start but will be less than the stop.
● Function: A named chunk of code you can run anytime just by calling its name; reuse code without

retyping it.

New Python Code

while True: Infinite loop

n_led = n_led + 1 Incrementing or updating a variable

n_led = 0 Defining or resetting a variable

break Break out of the nearest loop

–13–

https://create.kahoot.it/share/firia-labs-codebot-mission-4-obj-1-5/274224e8-9c7f-42bb-a648-c9b334bb7cfe
https://create.kahoot.it/share/firia-labs-codebot-mission-4-obj-6-12/1b909d22-067e-4135-ac7f-bba9273c70ad

Python with Robots

n_guests = n_guests + 1 Increment (also count = count + 1)

leds.ls_num(n_guests, True) Turn on LED using a variable

spkr.pitch(440) / sleep(0.1) Play a tone on the speaker

spkr.off() Turn off the speaker

buttons.was_pressed(0) Used by itself to debounce a button press

while count < 10: While loop (will iterate or repeat 10 times if count starts at 0)

from random import randrange Import random library

f = randrange(100, 1000) Get a random number within a range

def flashLEDs():
def note(freq, duration):

Define a function
Parameters are included in the ()

flashLEDs() / note(F4, 0.4) Call a function (arguments are included in the parenthesis)

Real World Applications
● Movies, art, theme parks, and more use code to create cool special effects!
● Traffic monitors use pressure switches to count traffic.
● Traffic lights sometimes have inductive coils on the surface to trigger the light to change.

Teacher Notes
● At the beginning of the lesson, require students

to create a flowchart or pseudocode and go
over the engineering design process.

● Trace the variables in the code together. Use
the debugger, use a display screen, or make a
large chart. Note that the loop doesn’t stop at 7,
there just aren’t any more LEDs left.

● Review the difference between = and ==.
● Students can refer to their Lab Data Sheet from

Mission 3 to help with moving forward and
turning.

Extensions / Cross-Curricular
● Make the animation longer by having the

CodeBot do more things.
● Wait for more than 5 people before triggering

the animation. Use a random number!
● Add code so when a button is pressed, the

CodeBot returns to its original position.
● LANGUAGE ARTS: Have students write a story

about a robot at a theme park.
● PERFORMING ARTS: Learn about music and

note notation.

–14–

Python with Robots

Mission 5: Fence Patrol Time Frame: 4-6 hours

Project Goal: Students will gain an in-depth
understanding of CodeBot’s line sensors.
Learning Targets

● I can print values in the console panel while
debugging to get real-time sensor values.

● I can use ls.read() to get real-time line sensor
values.

● I can make a contact counter to show each
line-detect on the user LEDs.

● I can teach the ‘bot to stay inside the lines.
● I can define a function that returns a Boolean

value.

Key Concepts
● Analog sensors are non-contact sensors used

in many industrial and commercial applications.
● Use threshold comparisons to make decisions

with sensor data.
● The console panel can be used to print

real-time data using the print() statement.
● Engineers build in safety features, like waiting

for a button press before starting.
● Autonomous robots use sensor data to make

decisions and take action in its unique
environment.

● A dark line on a light background will have a
smaller value; a light line on a dark background
will have a larger value.

Assessment Opportunities
● Quiz after Objective 5
● Submit flowchart or pseudocode for the project
● Submit the data record sheet of objects and

their sensor readings
● Use the lab sheets for the mission.
● Explain how a counter variable works
● Review Kahoot
● Submit final “LineSense” program

Supplemental Lab Data Sheets (see appendix)
● Obj 2 Line Sensors
● Obj 2 The Debug Console

Success Criteria
Read data from a line sensor and display it on
the Console Panel.
Use a variable for the threshold that is specific
for the testing environment.
Use a condition with the threshold to determine
if a line is detected.
Define a function for checking one sensor.
Define a function for checking all line sensors.
Define a function that turns on the LED above a
sensor if a line is detected.
Count each time a line is detected.
Reuse code from Mission 3 to drive the ‘bot.

Vocabulary
● Line sensors: Photo reflective sensors that detect lines and boundaries beneath the CodeBot
● API: Application Programming Interface – the details of how your program interacts with different services

it needs
● Analog: Infinite variation, like from dark to light or cold to hot
● ADC: Analog to digital converter
● REPL: “Read, evaluate, print loop” command line that enables print statement output
● DRY: Don’t Repeat Yourself – never write the same code twice
● Return statement: Exits the function and sends a value back to the code where the function was called

New Python Code

ls.read(num) / val = ls.read(n) Reads a line sensor. The sensor num can be 0-4, returns a
value between 0-4095

print(val)
print(“line sensor value = “, val)

Display the value of a variable on the console

threshold = 2500
is_detected = val < threshold
leds.ls_num(0, is_detected)

Assign a Boolean result of a comparison to a variable. Use
the Boolean variable in code.

<Line detection> Dark line on light surface – use val > threshold
Light line on dark surface – use val < threshold

–15–

https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials#data-sheets
https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials#lab-sheets
https://create.kahoot.it/share/firia-labs-codebot-mission-5/20d9499d-fe50-45a7-9f2c-623975832277

Python with Robots

n = 0
while n < 5:

detect_line(n)
n = n + 1

Use a comparison with a while loop and counter variable to
repeat a specific number of times

while True:
if buttons.was_pressed(0):

break

Wait loop for safe driving. The loop will wait and do nothing
until the button is pressed.

return is_detected / return got_line Return statement that gives a value back to the function call

hit = scan_lines()
if detect_line(count)

Call a function that returns a value. It can be used as an
assignment, or in a condition.

leds.user(line_count) Use a variable to turn on LEDs. line_count will be from 0-255

line_count = line_count + 1
if line_count == 256:

line_count = 0

Wrap-around the line_count variable for binary numbers. This
code will “reset” a variable to its initial value once it exceeds
its possible values.

Real World Applications
● Automatic Guided Vehicles (AGVs) use this kind of code to zoom around warehouse distribution centers,

getting packages to you!
● Robots are used to clean up environmental waste, explore underground mines, discover shipwrecks, and

do other tasks deemed unsafe for humans.

Teacher Notes
● Have students create flowchart sometime

before defining the detect_line() and
scan_lines() functions.

● Students should use the Console Panel to track
variables as they work to write the functions.

● Use at least one of the Lab Data Sheets to
practice reading the line sensor and different
reflective materials. They can check out
materials other than tape on the floor – let
them have fun with this. What kind of reading
does their notebook or backpack give? Does
the lighting matter?

● You may want to review incrementing a variable
and how a counter can be used to control a
while loop for specific repeating.

● You may want to review using a variable for
lighting LEDs.

Extension / Cross-Curricular
● Add a button for stopping the CodeBot.
● Use one button for dark on light readings, and

the other button for light on dark readings.
● Use one button for a lot of light in the room,

and the other button for a darker setting.
● Add sounds to the code so the ‘bot gives a

specific auditory announcement when it hits a
line.

● Use random numbers – it could be for speed,
amount of turn, etc.

● LANGUAGE ARTS: Have students write a poem
about programming or robots.

● SCIENCE: Explore light sensors and how they
work.

● SCIENCE: Discuss the difference between
analog and digital – give examples.

● PHYSICAL SCIENCE: Do experiments with
different speeds and thresholds. Which ones
work the best? When is the ‘bot not able to
detect a line? Make predictions and then test
them.

● MATH: Make a chart out of the data on the
recording sheet.

● ART: Attach a marker to the ‘bot and have it
draw a picture as it stays within the lines.

–16–

Python with Robots

Unit 2 Remix Project and Exam Time Frame: 2-5 hours

Remix Project Goal: Students will use the skills and
concepts they learned in Mission 4 and Mission 5 to
create their own project.

Remix Project Outline: Follow the five-steps of the
design process (document on next page) to design a
remix project.

Remix Project Assessment Opportunities
● Peer reviews / Gallery walk
● Remix 2 Log planning guide
● Remix Rubric
● Submit Remix Program

Unit 2 Exam Opportunities
● Unit 2 Vocabulary review Kahoot
● Unit 2 Concepts and coding review Kahoot
● Unit 2 Vocabulary test (MS Form)
● Unit 2 Concepts & coding test (MS Form)

Remix Project Ideas:
● Pick an extension idea from Mission 4 or Mission 5.
● Combine Mission 4 and Mission 5 using the buttons: press 0 for animatronics and 1 for fence patrol.
● Add a line detection function to the animatronics program so it doesn’t “fall off the stage”
● Add sounds and actions to the fence patrol mission.
● Think of your own creative project with movement and LEDs and button input.

Remix Rubric Checklist:
Filename is descriptive
Uses one or more variables, each with a descriptive name
Moves the CodeBot forward and/or backward one or more times
Turns the CodeBot one or more times
Plays a sound
Turns on one or more LED lights
Uses one or two buttons as input
Uses the line sensors to control the CodeBot
Defines at least one function with a return
Code follows programming conventions of comments, readability, indenting, and capitalization
Code runs with no errors

–17–

https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials#remix-logs
https://create.kahoot.it/share/firia-labs-codebot-unit-2-vocabulary-review-missions-4-5/456e14e6-6a4f-43b5-91b3-d6af75397a6c
https://create.kahoot.it/share/firia-labs-codebot-unit-2-coding-review-missions-4-5/c68432d2-742d-4879-b4d6-3378aae37ddb
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUMjdJOUFWR1dJNkpGS0hGSTBGT1pBVElQSy4u&sharetoken=PILrd6Q9jqAean5Hems3
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUQUU3WVBPMkNBVTlCVkk4N1UxTkNYWFJITi4u&sharetoken=iQnzUMafV3sPsIFSgvjx

Python with Robots

Unit 2 Remix Log Name:

Remix Step 1: Review your code from Mission 4 and 5

Mission 4: Animatronics
What does this program do?
Mission 5: Fence Patrol
What does this program do?

What programming concepts did you learn
and use in each mission?

Remix Step 2: Remix Project Concept

Look over the remix suggestions. Discuss
with a partner. Then decide what you want
to do for your remix project. Describe what
your remix project will do:

Remix Step 3: Plan your code. What variables will you use in the project?
Fill out the charts below. Use another piece of paper to design your program with a flowchart or pseudocode.

What variables will you use in the project?
Fill in the chart. You do not need to fill in
every line, or you can add more.

Variable Name What it will be used for:

What buttons will you use, and what will
happen when pressed?

Button What will happen:

What functions will you write? Describe
each one.

Function name What it will do

–18–

Python with Robots

Remix Step 4: Write your code

Use the sandbox when you write the code. Write just a few lines at a time and test often.

Remix Step 5: Commenting and feedback

Documentation ● Make sure your code is readable by adding blank lines
● Add comments to explain sections of code

Peer feedback: Get feedback from two (or more) people. You can be one of the peer reviewers.

Peer Review #1 Name:

Go through the checklist. Are all
requirements met? If not, list any missing
criteria.

What do you like about the program – be
specific!

Give at least one suggestion. Begin with
“what if” or “maybe you could”

Peer Review #2 Name:

Go through the checklist. Are all
requirements met? If not, list any missing
criteria

What do you like about the program – be
specific!

Give at least one suggestion. Begin with
“what if” or “maybe you could”

Review the comments. Then take time to improve or add to your project.

Post-Mission Reflection

What did you change in your project after
reading the feedback?

What did you learn about yourself from
completing this project?

–19–

Python with Robots

Unit 2 Remix Rubric Checklist:
Filename is descriptive
Uses one or more variables, each with a descriptive name
Moves the CodeBot forward and/or backward one or more times
Turns the CodeBot one or more times
Plays a sound
Turns on one or more LED lights
Uses one or two buttons as input
Uses the line sensors to control the CodeBot
Defines at least one function with a return
Code follows programming conventions of comments, readability, indenting, and capitalization
Code runs with no errors

–20–

Python with Robots

Unit 3: Get Moving (10-18 hours)
Students learn more about CodeBot and programming. They will use line sensors and proximity sensors to
control the CodeBot. Students will utilize lists in their code to make it more efficient. They will use math to
calibrate the sensors and inform the decision-making of the ‘bot.

Summary of Mission 6:

The project in this mission is to have CodeBot follow a line. The line can be dark on light or light on
dark. Students will learn to calibrate the line sensors and use code to precisely follow a line. They
will also use sound as an indicator for completing a task.

Summary of Mission 7:

Students will use the built-in proximity sensors to detect objects. They will calibrate the ‘bot so it
can adapt to its environment, depending on the reflectivity of the surface. The final project will
enable the ‘bot to follow an object, like a curious puppy that chases a ball.

Preparation and Materials:

● Students need a computer / laptop with the Chrome web browser.
● Make sure the students can successfully login to http:/make.firialabs.com
● Students login with their account (possibly using their gmail account)
● Each student (or pair) needs a CodeBot and connecting cable.
● Tape for a line that the ‘bot can follow (needs to be the opposite color of the floor).
● Objects for the proximity sensors to detect in front of the ‘bot.
● Metric ruler and different surfaces for testing

Assessment:

Mission 6 Review Kahoot Mission 7 Review Kahoot Unit 3 Vocabulary Test (Microsoft Form)

Unit 3 Vocab Review Kahoot Unit 3 Coding Review Kahoot Unit 3 Coding and Concept Test (MS Form)

Standards addressed in this unit:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-01
● 2-CS-02
● 2-CS-03
● 2-DA-08
● 2-DA-09
● 2-AP-10
● 2-AP-11
● 2-AP-12
● 2-AP-13
● 2-AP-14
● 2-AP-15
● 2-AP-16
● 2-AP-17
● 2-AP-18
● 2-AP-19

● 3A-CS-01
● 3A-CS-02
● 3A-CS-03
● 3A-AP-13
● 3A-AP-14
● 3A-AP-15
● 3A-AP-16
● 3A-AP-17
● 3A-AP-18
● 3A-AP-19
● 3A-AP-21
● 3A-AP-22
● 3A-AP-23
● 3A-AP-26

● 3B-CS-02
● 3B-AP-10
● 3B-AP-12
● 3B-AP-14
● 3B-AP=15
● 3B-AP-16
● 3B-AP-17
● 3B-AP-21
● 3B-AP-22
● 3B-AP-23

–21–

http://make.firialabs.com
https://create.kahoot.it/share/firia-labs-codebot-mission-6/efb31058-8e4b-4a7d-8239-32489c5462c9
https://create.kahoot.it/share/firia-labs-codebot-mission-7/d66d1ea8-5156-459d-aeea-d3038dc638b6
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUMVNNS0xEMDUzMThKNjFCNk5ZVVVVMjNNTy4u&sharetoken=1H6qOqn9X9wgE6oU10Gw
https://create.kahoot.it/share/firia-labs-codebot-unit-3-vocabulary-review-missions-6-7/73b634fe-374f-4ed3-98d6-16a2d77c3807
https://create.kahoot.it/share/firia-labs-codebot-unit-3-coding-review-missions-6-7/b276f5e7-8e82-479b-bf35-f1a93737b251
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUQUxEN0FVSjdZWkJMWFM3U01ZSUdTT1A1WS4u&sharetoken=tvxEMHqWIzfyy7V2YDWj

Python with Robots

Mission 6: Line Follower Time Frame: 4-6 hours

Project Goal: Students use sensor input to program
the ‘bot to follow a line.
Learning Targets

● I can use REPL to gather real-time data from
sensors.

● I can call the ls.check() function to use the ADC
hardware channel scanning feature.

● I can use logic operators to increase the
reliability and speed of the ‘bot.

● I can use tuples to create proportional speed
control.

● I can use built-in math functions to calibrate
the CodeBot.

Key Concepts
● There is no “hidden magic” going on here! The

‘bot responds to programmed inputs and
outputs.

● The line follower ‘bot will need to continuously
check for the presence of a line beneath all five
sensors.

● A list and a tuple are similar, but different. A list
is mutable, or can change, and tuple is
immutable, or cannot be modified.

● Pre-coded functions from the botcore library
can use the ADC hardware, making your
program even faster!

● Auto-calibration algorithms can make your
‘bot adaptable to any environment.

● Global variables exist outside a function, while
local variables are created inside a function.
You can declare a variable global in a function.

● Python has many built-in functions for math.

Assessment Opportunities
● Quiz after Objective 2
● Quiz after Objective 8
● Submit flowchart or pseudocode for the project
● Submit the “CheckLines” program
● Review Kahoot
● Submit final “LineFollow1” program

Supplemental Lab Data Sheets (see appendix)
● Obj 2 Using REPL
● Obj 3 LIne Sensing
● Obj 4 New Threshold
● Obj 5 Between the Ed
● Obj 5 Line Follower Reflection

Success Criteria
Create a basic line follower program using two
edge sensors
Improve the program with a center line sensor
to keep the ‘bot straight
Use all five line sensors for proportional
steering control
Adapt to your environment with line calibration
code

Vocabulary
● List: A sequence of items you can access with an index
● Tuple: Read-only form of a list
● Or (logical operator): Multiple conditions to compare, testing if any one (or both) is true
● Hard coded values: Specific values used in code that can be replaced with a variable or constant
● Globals: Variables defined outside a function in the main program; they are available and can be

accessed during the entire program execution
● Locals: Variables defined inside a function; they only exist during the function execution and can only be

accessed in the function
● Int (integer): A value that is an integer; designated as int in Python; can be positive or negative
● Float (decimal): A value that is a decimal, also known as floating point; can be positive or negative.
● Auto-calibrate: Use CodeBot sensors to automatically adapt to its environment by detecting lines and

objects and setting parameters like is_reflective and thresh.

New Python Code

detected = [False, False, False, False, False] Create a list

detected[count] = val > thresh Update a specific value in a list

–22–

https://create.kahoot.it/share/firia-labs-codebot-mission-5/20d9499d-fe50-45a7-9f2c-623975832277

Python with Robots

leds.ls([False, False, False, False, False])
vals = check_lines(threshold)
leds.ls(vals)

Use a list with LEDs

vals = ls.check(thresh, is_reflective)
leds.ls(vals)

Botcore line sensors function (similar to
check_lines but faster). It takes 2
parameters and returns a tuple.

elif vals[1] or vals[2] or vals[3]: Using the or logical operator. Can have 2 or
more conditions, any of which can be true
and make the entire condition true

elif vals == (0, 1, 1, 0, 0): Comparing with a tuple

global count / global thresh, is_reflective Code needed to indicate a global variable
inside a function

abs(x) / round(x, ndigits) Built-in math operations (math library)

Real World Applications
Self-driving cars, autonomous flying drones and other computing systems that navigate on their own have some
basic principles in common. Whether writing code for a vehicle with a high-powered vision processing system or
for CodeBot’s low-power sensors, you will face many of the same challenges to achieve the objective. Based on
sensor inputs, what actions should you take to stay on the path? Robots that zip through warehouse distribution
centers often follow lines as they pick up and pack items you order when shopping online.

Teacher Notes
● There is a lot going on during this mission! Take

your time and don’t rush through the
objectives.

● Use REPL and the Lab Data Sheets to make
sense of what the data returned by the sensors
and what the ‘bot is doing with it.

● Many Lab Data Sheets are available. Use the
ones that are helpful to your students.

● Competition! Lay out a track and see which ‘bot
gets to the finish line first.

Extensions / Cross-Curricular
● Add a button to stop the ‘bot.
● Add more sounds in the code. Play a sound

when on the line, or a different sound when
going off the line.

● Light up user LEDs as a communication on
what the ‘bot is doing.

● Have a competition on a track to see who’s ‘bot
gets to the finish line first. If it is yours, play a
victory song and do a dance!

● LANGUAGE ARTS: Have students compare
and contrast how the line sensors are used in
Mission 5 and Mission 6. What are the
similarities and differences?

● SCIENCE: Discuss friction and turning speeds.
Experiment with the ‘bot on slow turning
speeds vs fast turning speeds and what type of
angles they work the best on. Try the ‘bot on
different surfaces.

● MATH: Make charts out of the data on the
recording sheet.

–23–

Python with Robots

Mission 7: Hot Pursuit Time Frame: 4-6 hours

Project Goal: Students will use proximity sensors to
program the ‘bot to track and chase an object.
Learning Targets

● I can use the proximity sensor to detect
objects.

● I can experiment with light and dark surfaces to
find the ideal power and threshold settings for
each environment.

● I can write calibration functions so the ‘bot can
adapt to its environment.

● I can apply previous knowledge of the motors
to rotate and face an object moving in front.

● I can follow an algorithm to track an object and
chase after it.

Key Concepts
● CodeBot uses the Infrared Proximity Sensor

system to detect objects in its path.
● A detection threshold of 0-100% controls how

much light is needed for a True detection. If you
decrease the thresh value, the ‘bot works well
even on a white surface.

● An emitter power level setting from 1 to 8 (high
power) controls the brightness of CodeBot’s IR
“flashlight.”

● The prox.detect(power, thresh) function lets
you adapt to different environments.

● Using auto calibration functions for power and
thresh allows the ‘bot to adapt to a new
environment.

Assessment Opportunities
● Quiz after Objective 5
● Have students explain the power and threshold

used in prox.detect()
● Have students explain how a variable can be

used to “toggle” a Boolean value.
● Review Kahoot
● Submit final “HotPursuit” program

Supplemental Lab Data Sheets (see appendix)
● Obj 1 Presence Detector Experiment
● Obj 2, 4, 7 Lab Data Sheet
● Obj 1 Surface Test
● Obj 2 Power / Obj 2 Threshold
● Mission 7 Reflection

Success Criteria
Use the basic proximity sensor prox.detect() to
detect objects in front of the ‘bot.
Use prox.range() to find the best threshold for
detecting a reflection.
Write calibration functions for power and
threshold.
Use motors to follow a detected object.
Calculate and use a turn ratio for a more
smooth movement when chasing an object.

Vocabulary
● Proximity sensors: Infrared (IR) sensors that can detect nearby objects based on reflected IR light
● Detection sensitivity: How much light is needed for the proximity sensor to detect an object (0 to 100)
● Emitter power level: The brightness of CodeBot’s IR flashlight, with settings from 1 to 8 (high power)
● not (logical operator): A special kind of logical operator that needs only one Boolean operand, and

inverts it; it can be used to toggle a Boolean variable

New Python Code

prox.detect() Read the proximity sensors; returns a tuple (left, right) with
values True or False

vals = prox.detect()
left_detect = vals[0]
right_detect = vals[1]

Using the detect function – it returns a tuple
Vals[0] could also be vals[LEFT]
Vals[1] could also be vals[RIGHT]

p=prox.detect()
leds.prox(p)

Use the True/False values of detect() to turn on/off the
LEDs by the proximity sensors

prox.detect(power, threshold) Use parameters with the function.
Power is the “flashlight” with settings from 1 to 8 (high)
Threshold is the sensitivity level, with settings from 0 to
100 (how much light is needed to detect an object)

–24–

https://create.kahoot.it/share/firia-labs-codebot-mission-7/d66d1ea8-5156-459d-aeea-d3038dc638b6

Python with Robots

prox.range()
prox.range(samples, power, low, high)

A function that calculates the ideal threshold in an
environment. It returns a tuple – two numbers, a threshold
for left and a threshold for right. Parameters are optional.

go_motors = False
go_motors = not go_motors

Use the logical operator not to “toggle” the go_motors
Boolean value: will go from True to False to True, etc.

Real World Applications
The kind of code you’ve written is inside electronic objects you might use every day, without even thinking about
it! Some examples are given below. Can you think of even more?

● Touchless faucets
● soap dispensers and hand dryers
● automatic doors
● vehicle navigation and safety systems
● factory automation systems

Teacher Notes
● For testing surfaces, you can use cardstock,

construction paper, etc of different colors.
Ideally each student/pair should have at least
white and black and a color in between. You
could also use material, shiny surfaces, etc.

● Natural light will impact the results. If you have
windows, morning and afternoon classes may
get different numbers.

● The person measuring distance should not be
in range of the sensors!

● One sensor may be more sensitive than the
other. Decide what you will measure and be
consistent!

● Several Lab Data Sheets are also available. Use
the ones that are helpful to your students.

● The REPL console log streams at a very fast
pace. Students can slow it down with a sleep()
statement.

● Once again, there is a lot of information given
in this lesson, and sometimes the steps go
quickly. Take your time with each objective and
review the concepts frequently.

● Give examples of things that need calibration,
and how you might do the calibration. In this
program, students start with one calibration
function and then use it in another to do a
second calibration. This can be tricky. You
might want to work out an example on the
board.

Extensions / Cross-Curricular
● Add sound to the chase.
● Add an animation. Keep track of the time. If the

object hasn’t moved in 10 seconds, have the
‘bot perform an animation, like a puppy asking
for the ball to be thrown.

● Add an animation for when there is no object
detected, like a puppy wanting to play.

● LANGUAGE ARTS: Have students write a
summary of their project, using technical terms.

● SCIENCE: Have a lesson on IR.
● SCIENCE: Turn some of the objectives into

experiments. Make an hypothesis and go
through the scientific method to prove or
disprove.

● MATH: The last objective uses a turn ration.
Have a lesson on ratios.

● MATH: The lesson gives the possibility of
having a lot of test data recorded. Use the data
to make inferences, charts, etc.

–25–

Python with Robots

Unit 3 Remix Project and Exam Time Frame: 2-5 hours

Remix Project Goal: Students will use the skills and
concepts they learned in Mission 6 and Mission 7 to
create their own project.

Remix Project Outline: Follow the five-steps of the
design process (document on next page) to design a
remix project.

Remix Assessment Opportunities
● Peer reviews / Gallery walk
● Remix 3 Log planning guide
● Remix Rubric Checklist
● Submit Remix Program

Unit 3 Exam Opportunities
● Unit 3 Vocabulary review Kahoot
● Unit 3 Concepts and coding review Kahoot
● Unit 3 Vocabulary test (MS Form)
● Unit 3 Concepts & coding test (MS Form)

Remix Project Ideas:
● Pick an extension idea from Mission 6 or Mission 7.
● Start with a line follower program and then allow the ‘bot to be distracted by a detected object and go “off

course.”
● Add sounds and animations to one of the mission projects.
● Think of your own creative project with line or proximity sensors, movement, LEDs and button input.

Remix Rubric Checklist:
Filename is descriptive
Uses one or more variables, each with a descriptive name
Moves the CodeBot forward and/or backward one or more times
Turns the CodeBot one or more times
Turns on one or more LED lights
Uses one or two buttons as input
Uses at least one sensor to control the CodeBot
Defines at least one function with a return
Includes something extra (sound, more than one sensor, more than one function, etc.)
Code follows programming conventions of comments, readability, indenting, and capitalization
Code runs with no errors

–26–

https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials#remix-logs
https://create.kahoot.it/share/firia-labs-codebot-unit-3-vocabulary-review-missions-6-7/73b634fe-374f-4ed3-98d6-16a2d77c3807
https://create.kahoot.it/share/firia-labs-codebot-unit-3-coding-review-missions-6-7/b276f5e7-8e82-479b-bf35-f1a93737b251
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUMVNNS0xEMDUzMThKNjFCNk5ZVVVVMjNNTy4u&sharetoken=1H6qOqn9X9wgE6oU10Gw
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUQUxEN0FVSjdZWkJMWFM3U01ZSUdTT1A1WS4u&sharetoken=tvxEMHqWIzfyy7V2YDWj

Python with Robots

Unit 3 Remix Log Name:

Remix Step 1: Review your code from Mission 6 and 7

Mission 4: Line Follower
What does this program do?

Mission 5: Hot Pursuit
What does this program do?

What programming concepts did you learn
and use in each mission?

Remix Step 2: Remix Project Concept

Look over the remix suggestions. Discuss
with a partner. Then decide what you want
to do for your remix project. Describe what
your remix project will do:

Remix Step 3: Plan your code. What variables will you use in the project?
Fill out the charts below. Use another piece of paper to design your program with a flowchart or pseudocode.

What variables will you use in the project?
Fill in the chart. You do not need to fill in
every line, or you can add more.

Variable Name What it will be used for:

What functions will you write? Describe
each one.

Function name What it will do

–27–

Python with Robots

What buttons will you use, and what will
happen when pressed?

Button What will
happen:

Remix Step 4: Write your code

Use the sandbox when you write the code. Write just a few lines at a time and test often.

Remix Step 5: Commenting and feedback

Documentation ● Make sure your code is readable by adding blank lines
● Add comments to explain sections of code

Peer feedback: Get feedback from two (or more) people. You can be one of the peer reviewers.

Peer Review #1 Name:

Go through the checklist. Are all
requirements met? If not, list any missing
criteria.

What do you like about the program – be
specific!

Give at least one suggestion. Begin with
“what if” or “maybe you could”

Peer Review #2 Name:

Go through the checklist. Are all
requirements met? If not, list any missing
criteria

What do you like about the program – be
specific!

Give at least one suggestion. Begin with
“what if” or “maybe you could”

Review the comments. Then take time to improve or add to your project.

–28–

Python with Robots

Post-Mission Reflection

What did you change in your project after
reading the feedback?

What is something new you learned from
completing this project?

Unit 3 Remix Rubric Checklist:
Filename is descriptive
Uses one or more variables, each with a descriptive name
Moves the CodeBot forward and/or backward one or more times
Turns the CodeBot one or more times
Turns on one or more LED lights
Uses one or two buttons as input
Uses at least one sensor to control the CodeBot
Defines at least one function with a return
Includes something extra (sound, more than one sensor, more than one function, etc.)
Code follows programming conventions of comments, readability, indenting, and capitalization
Code runs with no errors

–29–

Python with Robots

Unit 4: Underneath the Hood (8-14 hours)
Students learn about internal and sophisticated sensors on CodeBot. First, they get behind the wheels by
learning about and programming the wheel encoders for precise driving control. Then they learn about
internal sensors for checking battery voltage and CPU temperature. Finally, students learn about the
accelerometer, what it is, and an application for detecting movement.

Summary of Mission 8:

In this mission students will learn to navigate their ‘bot using the wheel encoders for specific
direction, distance and speed. They will learn what the encoders are and how to use them in code
to determine distance, and then for speed and turning angles. This is a fairly detailed lesson with
more advanced concepts, including lists, functions with parameters and math calculations.

Summary of Mission 9:

The CodeBot has internal sensors that can measure battery voltage and CPU temperature.
Students learn how to access the built-in functions and use them in a meaningful way. The ‘bot’s
accelerometer is also introduced. Students practice writing code to understand the data and
complete the mission by creating an alarm robot.

Preparation and Materials:

● Students need a computer / laptop with the Chrome web browser.
● Make sure the students can successfully login to http://make.firialabs.com
● Students login with their account (possibly using their gmail account)
● Each student (or pair) needs a CodeBot and connecting cable.
● Different floor surfaces & something for an incline, like a sign board or large book
● Optional: something to heat the ‘bot (like a hairdryer) and something to cool the ‘bot (like

an ice pack)
Assessment:

Mission 8 Obj. 1-6 Review Mission 8 Obj. 7-12 Review Mission 9 Obj 1-7 Review Mission 9 Obj 8-12 Review

Unit 4 Vocab Review Unit 4 Coding Review U4 Vocab Test (MS form) U4 Coding Test (MS Form)

Standards addressed in this unit:

CSTA Standards Grades 6-8 CSTA Standards Grades 9-10 CSTA Standards Grades 11-12

● 2-CS-01
● 2-CS-02
● 2-CS-03
● 2-DA-08
● D-DA-09
● 2-AP-10
● 2-AP-11
● 2-AP-12
● 2-AP-13
● 2-AP-14
● 2-AP-15
● 2-AP-16
● 2-AP-17
● 2-AP-18
● 2-AP-19

● 3A-CS-01
● 3A-CS-02
● 3A-CS-03
● 3A-DA-11
● 3A-DA-12
● 3A-AP-13
● 3A-AP-14
● 3A-AP-15
● 3A-AP-16
● 3A-AP-17
● 3A-AP-18
● 3A-AP-19
● 3A-AP-21
● 3A-AP-23
● 3A-AP-22
● 3A-AP-26

● 3B-CS-02
● 3B-DA-05
● 3B-DA-06
● 3B-DA-07
● 3B-AP-10
● 3B-AP-12
● 3B-AP-14
● 3B-AP=15
● 3B-AP-16
● 3B-AP-17
● 3B-AP-21
● 3B-AP-22
● 3B-AP-23

–30–

http://make.firialabs.com
https://create.kahoot.it/share/firia-labs-codebot-mission-8-obj-1-6/5af4f55a-fce5-4134-b4bf-e2f8309d3fb3
https://create.kahoot.it/share/firia-labs-codebot-mission-8-obj-7-14/00c0584e-f8ea-4651-a2a3-4db0a88e7a7c
https://create.kahoot.it/share/firia-labs-codebot-mission-9-obj-1-7/fccc2ba6-c3ca-4f6b-a131-44af6af14b80
https://create.kahoot.it/share/firia-labs-codebot-mission-9-obj-8-12/aab9df2a-de3b-47e2-9793-6b7ce15a5ae2
https://create.kahoot.it/share/firia-labs-codebot-unit-4-vocabulary-review-missions-8-9/759f2751-5c37-4049-b07d-f27ad2704c00
https://create.kahoot.it/share/firia-labs-codebot-unit-4-coding-review-missions-8-9/53f79d01-600a-47e0-87ba-8a9c48d328c9
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUQUhQSE5LR1UyNVhaMFlTQzdKWkNGTThBUy4u&sharetoken=8wvdKWtGMYiZuqZaaowx
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUNE9OQzQ1SVhDSllOMDRLUzY4UTJSSUI2Uy4u&sharetoken=T8hvpN0hO9aEZXhTQCx9

Python with Robots

Mission 8: Navigation Time Frame: 4-6 hours

Project Goal: Students will write code to make the
CodeBot move exact distances and angles.
Learning Targets

● I can get to know the wheel encoders.
● I can calculate speed in cm/sec.
● I can create a function to move CodeBot an

exact distance using the wheel encoders.
● I can write a function to rotate CodeBot using

the wheel encoders.

Key Concepts
● Each wheel encoder consists of a disc with

slots that allow IR light to go through. Counting
the light-dark and dark-light intervals can be
used to track distance exactly.

● Knowing the distance can enable the ‘bot to
move precisely a given distance at a given
speed.

● The encoders can also be used to calculate a
turning angle.

● Using lists for the data helps manage the
information for both wheels.

● The time library has built-in functions that can
be used to track time

Assessment Opportunities
● Quiz after Objective 3
● Have students explain how the wheel encoders

work
● Review lists and give sample code for students

to work through
● Obj. 1-6 Review Kahoot
● Obj. 7-14 Review Kahoot
● Submit final “EncoderTest” program

Supplemental Lab Data Sheets (see appendix)
● Obj 9 Speedometer (part 1 and part 2)
● Surface Test
● Data Sheet
● Speedometer (procedure 1 and 2)

Success Criteria
Write code to measure each wheel’s distance
traveled.
Define a drive() function to move CodeBot an
exact distance.
Track distance over time, to measure the speed
of the ‘bot’s wheels.
Calculate the top speed in centimeters per
second.
Write “cruise control” code to maintain a set
speed over any terrain.
Define a rotate() function to turn the ‘bot, and
that builds on the encoder code.

Vocabulary
● Wheel encoders: A disc with slots that rotates with a wheel so that an IR light beam can pass through its

slots. The pulses of light can be counted to see how much the wheel has rotated.
● State: Property of an object; for example True or False. The state can be stored in a variable so the current

state can be compared to the previous state.
● Speed: Distance / Time (can by any measures; we will use cm/second and also counts/second)
● Iterative process: Repeatedly taking small steps to build a whole solution.
● Closed loop control: Automates control of a system by sensing the output state and comparing it to the

desired state (input).
● Feedback loop: Continuously adjusts the system to keep the error, or difference between input and

output, close to zero. In our mission, the feedback comes from the encoders, the input is the desired
speed and the output is the actual speed. Disturbance can be friction, surface type, etc.

● Breakpoint: A marker you can place on any executable line of code that will cause the debugger to stop.

New Python Code

val = enc.read(side) Reads the encoder’s analog value (LEFT or RIGHT)

if enc_state != slot: The != is the “not equals” comparison operator

enc_count = [0, 0] Define a list of counters, initializing them to 0

enc_count[LEFT] = enc_count[LEFT] + 1 Increment a list counter

–31–

https://create.kahoot.it/share/firia-labs-codebot-mission-8-obj-1-6/5af4f55a-fce5-4134-b4bf-e2f8309d3fb3
https://create.kahoot.it/share/firia-labs-codebot-mission-8-obj-7-14/00c0584e-f8ea-4651-a2a3-4db0a88e7a7c

Python with Robots

import math
CIRCUM = math.pi * DIAMETER

Import the math library
Use math.pi in a calculation

start_count = enc_count Makes a new REFERENCE to the list (not used!)

start_count = enc_count.copy() Makes a copy of the list, each one is separate

buttons.was_pressed(0) Put in code to debounce the button

import time
t_start = time.ticks_ms()

Import the time library; ticks_ms marks the passage of
time in milliseconds, starting at 0 when the ‘bot boots. It
keeps counting while the device is running.

ticks_diff(end_time, start_time) Gives the difference between the start and stop time. Use
instead of subtraction because like a clock, time can wrap
around.

err = (input - output) * FEEDBACK-PWR
Power[side] = power[side] + err

Calculate the feedback
Apply feedback to system

sleep_ms() Delay in milliseconds

def drive(cm, speed, dir=[+1, +1] Set a default parameter

Real World Applications
Rotary encoders are used in any device with a “knob,” like vehicles and appliances. A car odometer and
speedometer must use these same calculations to display the car’s distance traveled and speed. A 3D printer’s
control system uses a control loop to measure distance and speed to ensure a good print.

Teacher Notes
● Several Lab Data Sheets are available for the

mission. Use the ones that are helpful for your
students.

● Once again, there is a lot of information given
in this lesson, and sometimes the steps go
quickly. Take your time with each objective and
review the concepts frequently.

● There is a lot of math in this lesson. Review
important concepts as needed, and maybe
even do some practice problems on paper to
help with the understanding and application.
The basic distance = rate * time and its
variations is the main calculation, but students
also need to be familiar with circles and their
calculations.

Extensions / Cross-Curricular
● Revisit the “NavSquare” project from Mission 3

and rework the code using wheel encoder
code.

● Add sounds and LEDs to the code, indicating
what the ‘bot is doing.

● Use the buttons to switch between different
projects. For example, if BTN-O is pressed,
follow a line, but if BTN-1 is pressed, use the
wheel encoder code.

● LANGUAGE ARTS: Have students write a short
description of the ‘bot and its wheel encoder
capabilities for an online shopping store.

● SCIENCE: Encoders use IR light. Have a lesson
about light, how it is emitted, reflected and
detected.

● MATH: The lesson uses the geometry of
circles. Have a lesson or activities that involve
circles, diameters, and circumference.

● MATH: The lesson calculates a turn ratio.
Discuss ratios. Or even calculate the distance
traveled by the ‘bot while it is turning. Or
calculate the angle turned given a ratio.

–32–

Python with Robots

Mission 9: All Systems Go! Time Frame: 2-3 hours

Project Goal: Students will use input sensors to
monitor battery voltage, system temperature and
physical orientation.
Learning Targets

● I can use internal sensors to monitor battery
voltage.

● I can use internal sensors to monitor system
temperature.

● I can use internal sensors to monitor physical
orientation.

● I can use physical orientation to detect motion.

Key Concepts
● The ‘bot can measure its own battery voltage

and CPU temperature. The data can be used to
show alerts to avoid problems.

● The accelerometer detects orientation in three
dimensions. The CodeBot can be programmed
to act on conditions based on its orientation.

● The accelerometer can also be used to detect
motion in the CodeBot. Any slight movement
can be detected and used for an alarm.

Assessment Opportunities
● Quiz after Objective 10
● Submit “BatteryTest” program
● Submit “TemperatureCheck” program
● Have students give details on the data from the

accelerometer.
● Submit “AccelTest” program
● Obj. 1-7 Review Kahoot
● Obj. 8-12 Review Kahoot
● Submit final “GuardBot” program

Supplemental Lab Data Sheets (see appendix)
● Obj 3 & 6 (Battery & Temperature Check)
● Obj 3 Battery Check
● Obj 6 Temperature Check

Success Criteria
Code a battery tester to tell how much voltage
is left in the ‘bot’s battery pack.
Use the temperature sensor to show an alert to
turn on the fan or heater.
Detect orientation with the accelerometer and
rotate the ‘bot toward the sky.
Make a motion alarm guard-bot.

Vocabulary
● Under load :When batteries are being used to power a peripheral, like turning on LEDs or running motors
● User interface: The UI; the part of the computer that humans interact with directly. On the ‘bot it can be

buttons and LEDs.
● Ambient: Surroundings
● Baseline data: Starting point used for comparison; original data
● Deadband: In a control system, the range or band of input values where the output doesn’t change;

similar to a threshold
● Accelerometer: A tiny chip that measures the force of acceleration in three directions: x, y and z
● MEMS: Micro-Electro-Mechanical System; a chip with tiny silicon structures inside that really move, with

electronic components to sense them

New Python Code

v = system.pwr_volts() Measure power supply voltage (either battery or USB) – returns the float
power supply voltage

system.pwr_is_usb() Returns 1 for USB (or True) or 0 for battery pack (or False)

leds.pwr(True) Turns on the red LED just above the power switch

samples.append(temp) Adds a value to the end of a list

samples.clear() Empties the list

–33–

https://create.kahoot.it/share/firia-labs-codebot-mission-9-obj-1-7/fccc2ba6-c3ca-4f6b-a131-44af6af14b80
https://create.kahoot.it/share/firia-labs-codebot-mission-9-obj-8-12/aab9df2a-de3b-47e2-9793-6b7ce15a5ae2

Python with Robots

now = accel.read()
x, y, z = accel.read()

Read the three values from the accelerometer (will be a tuple)

accel.dump_axes() Prints the accelerometer reading on the REPL console

dx = now[0] - before[0] Calculate the difference between the current reading and the previous
reading

if abs(dx) > SENS:
alarm()

If the difference between readings is more than the sensitivity, sound the
alarm

Real World Applications
You already use this kind of code daily! Your phone tracks and displays its battery usage. Electronic thermostats
control temperature in most buildings. Accelerometers are used in everything from smart watches to game
controllers.

Teacher Notes
● In Obj. 3, students will delete a function they

created in Obj. 2.
● This mission features several short programs.

You may want to do one a day, and spread
them out over several days. You can take time
to discuss the concepts of each lesson.

● Lab Data Sheets are provided for the battery
check and the temperature check. Use the
ones that are most helpful for your students.

● You may want to have some extra supplies on
hand for some of the missions:

○ Batteries in different stages of use
○ Something to heat up and cool down

the bot (like a hair dryer, ice pack, etc.)
○ An incline for the robot to drive on (like

a sign board or large book)

Extension / Cross-Curricular
● Combine the battery tester with the

temperature check and have the ‘bot check
use all of its internal sensors in one program.

● Add LEDs to the guard bot program
● Add sound to the battery check and

temperature check programs.
● Use a button to turn on/off the guard bot.
● LANGUAGE ARTS: Have students write a lab

report or technical paper about one of the
programs in the mission.

● MATH: The lesson uses the y=mx+b equation
for battery percentage. Plot your own points
from battery data and create your own
equation. Or use the equation for other data.

● SCIENCE: The accelerometer measures gravity.
Have a lesson on gravity, and maybe in space
and on other planets.

● SCIENCE: The first program talks about the
“load” of a battery. Create some simple circuits
and measure the loads for each one.

–34–

Python with Robots

Unit 4 Remix Project and Exam Time Frame: 2-5 hours

Remix Project Goal: Students will use the skills and
concepts they learned in Mission 8 and Mission 9 to
create their own project.

Remix Project Outline: Follow the five-steps of the
design process (document on next page) to design a
remix project.

Remix Assessment Opportunities
● Peer reviews / Gallery walk
● Remix 4 Log planning guide
● Remix Rubric Checklist
● Submit Remix Program

Unit 4 Exam Opportunities
● Unit 4 Vocabulary review Kahoot
● Unit 4 Concepts and coding review Kahoot
● Unit 4 Vocabulary test (MS Form)
● Unit 4 Concepts & coding test (MS Form)

Remix Project Ideas:
● Pick an extension idea from Mission 8 or Mission 9.
● Combine the animatronics with the motion sensor. Have the robot before some animation when motion is

detected (like a spooky Halloween character).
● Combine the battery tester with the navigation program so that you are warned when the battery power is

low during a driving mission.
● Combine the accelerometer readings with the navigation system for specific driving capabilities.
● Think of your own creative project with line or proximity sensors, movement, LEDs and button input.

Remix Rubric Checklist:
Uses one or more variables, each with a descriptive name
Reads one or more sensors: encoders, battery power, temperature, or accelerometer
Uses the data from the sensor reading to control the CodeBot
Controls one or more peripherals: LEDs, sound, motors
Uses one or two buttons as input
Defines and uses at least one function
Defines and uses at least one list
Includes something extra (sound, more than one sensor, more than one function, etc.)
Code follows programming conventions of comments, readability, indenting, and capitalization
Code runs with no errors

–35–

https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials#remix-logs
https://create.kahoot.it/share/firia-labs-codebot-unit-4-vocabulary-review-missions-8-9/759f2751-5c37-4049-b07d-f27ad2704c00
https://create.kahoot.it/share/firia-labs-codebot-unit-4-coding-review-missions-8-9/53f79d01-600a-47e0-87ba-8a9c48d328c9
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUQUhQSE5LR1UyNVhaMFlTQzdKWkNGTThBUy4u&sharetoken=8wvdKWtGMYiZuqZaaowx
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUNE9OQzQ1SVhDSllOMDRLUzY4UTJSSUI2Uy4u&sharetoken=T8hvpN0hO9aEZXhTQCx9

Python with Robots

Unit 4 Remix Log Name:

Remix Step 1: Review your code from Mission 8 and 9

Mission 8: Navigation
What does this program do?

Mission 9: All Systems Go!
What does this program do?

What programming concepts did you learn
and use in each mission?

Remix Step 2: Remix Project Concept

Look over the remix suggestions. Discuss
with a partner. Then decide what you want
to do for your remix project. Describe what
your remix project will do:

Remix Step 3: Plan your code. What variables will you use in the project?
Fill out the charts below. Use another piece of paper to design your program with a flowchart or pseudocode.

What variables and lists will you use in the
project? Fill in the chart. You do not need to
fill in every line, or you can add more.

Variable / List Name What it will be used for:

What functions will you write? Describe
each one.

Function name What it will do

–36–

Python with Robots

What buttons will you use, and what will
happen when pressed?

Button What will
happen:

Remix Step 4: Write your code

Use the sandbox when you write the code. Write just a few lines at a time and test often.

Remix Step 5: Commenting and feedback

Documentation ● Make sure your code is readable by adding blank lines
● Add comments to explain sections of code

Peer feedback: Get feedback from two (or more) people. You can be one of the peer reviewers.

Peer Review #1 Name:

Go through the checklist. Are all
requirements met? If not, list any missing
criteria.

What do you like about the program – be
specific!

Give at least one suggestion. Begin with
“what if” or “maybe you could”

Peer Review #2 Name:

Go through the checklist. Are all
requirements met? If not, list any missing
criteria

What do you like about the program – be
specific!

Give at least one suggestion. Begin with
“what if” or “maybe you could”

Review the comments. Then take time to improve or add to your project.

–37–

Python with Robots

Post-Mission Reflection

What did you change in your project after
reading the feedback?

What are some reasons you would give
your friend for learning to program?

Unit 4 Remix Rubric Checklist:
Uses one or more variables, each with a descriptive name
Reads one or more sensors: encoders, battery power, temperature, or accelerometer
Uses the data from the sensor reading to control the CodeBot
Controls one or more peripherals: LEDs, sound, motors
Uses one or two buttons as input
Defines and uses at least one function
Defines and uses at least one list
Includes something extra (sound, more than one sensor, more than one function, etc.)
Code follows programming conventions of comments, readability, indenting, and capitalization
Code runs with no errors

–38–

Python with Robots

Mission Pack Final Project Time Frame: 4-8 hours

Final Project Goal: Students will use the skills and
concepts they learned during the mission pack “Python
with Robots” to create their own project.

Final Project Outline: Follow the five-steps of the
design process (document on next page) to design a
final project.

Assessment Opportunities
● Final project planning document (with rubric)
● CodeBot Project Rubric (CSTA Standards)
● Peer reviews / Gallery walk
● Remix Rubric Checklist
● Submit Final Program
● Student Reflection
● Project presentation or report

Final Project Ideas:
● Program the CodeBot to run an obstacle course, avoiding obstacles and navigating the course.
● Program the CodeBot to multitask – perform more than one task at a time. For example, it can navigate a

square while blinking an LED ten times per second.
● Think of your own creative project that combines concepts and code from several of the missions into

something unique and that you find interesting.

Teacher Notes:
● If you have your students try programming the ‘bot for the obstacle course, it can be an interesting and

fun class competition.
● A rubric is provided, but feel free to adjust it to the needs and special interests of your students.
● Most state and national computer science standards include teamwork and time management. Use the

final project as an opportunity for teamwork, leadership roles, electronic communication and managing a
project. Review the computer science standards for your state and grade band, and incorporate them into
this project. CSTA Standards are listed below.

○ Grades 6-8
○ 2-AP-18: Distribute tasks and maintain a project timeline when collaboratively developing

computational artifacts.
○ 2-IC-22: Collaborate with many contributors through strategies such as crowdsourcing or surveys

when creating a computational artifact.
○ Grades 9-10
○ 3A-AP-22: Design and develop computational artifacts working in team roles using collaborative

tools.
○ 3A-AP-27: Use tools and methods for collaboration on a project to increase connectivity of people

in different cultures and career fields.
○ Grades 11-12
○ 3B-AP-20: Use version control systems, integrated development environments (IDEs) and

collaborative tools and practices (code documentation) in a group software project.
● Most state and national computer science standards also include evaluating computational artifacts. Use

the final project as a point of discussion for the global impact of computers. The standards are listed
below to help guide class discussions, written prompts, project requirements, etc.

○ 2-IC-20: Compare tradeoffs associated with computing technologies that affect people’s everyday
activities and career options.

○ 2-IC-21: Discuss issues of bias and accessibility in the design of existing technologies.
○ 3A-IC-24: Evaluate the ways computing impacts personal, ethical, social, economic and cultural

practices.
○ 3A-IC-25: Test and refine computational artifacts to reduce bias and equity deficits.
○ 3B-IC-25: Evaluate computational artifacts to maximize their beneficial effects and minimize

harmful effects on society.
○ 3B-IC-26: Evaluate the impact of equity, access, and influence on the distribution of computing

resources in a global society.
○ 3B-IC-27: Predict how computational innovations that have revolutionized aspects of our culture

might evolve.

–39–

https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials#final-project
https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials#assessment-and-evaluation

Python with Robots

Final Project Planning Name:

Other team members:

Remix Step 1: Review your code from the mission pack

What programs / missions were your
favorite? What did you like about
them?

What programming concepts do you
feel you understand the most?

What programming concepts do you
need help with?

Remix Step 2: Final Project Concept

Look over the remix suggestions from
your favorite projects. Discuss with
your team. Then decide what you want
to do for the final project that will both
interest and challenge you. Describe
what your final project will do:

Remix Step 3: Plan your code. What variables will you use in the project?
Fill out the charts below. Use another piece of paper to design your program with a flowchart or pseudocode.

What variables and lists will you use in
the project? Fill in the chart. You do not
need to fill in every line, or you can
add more.

Variable / List Name What it will be used for:

–40–

Python with Robots

What functions will you write?
Describe each one.

Function name What it will do

What buttons will you use, and what
will happen when pressed?

Button What will happen:

Remix Step 4: Write your code

Use the sandbox when you write the code. Write just a few lines at a time and test often.

Remix Step 5: Commenting and feedback

Documentation ● Make sure your code is readable by adding blank lines
● Add comments to explain sections of code

Peer feedback: Get feedback from two (or more) people.

Peer Review #1 Name:

Go through the rubric. Are all
requirements met? If not, list any
missing criteria.

What do you like about the program –
be specific!

Give at least one suggestion. Begin
with “what if” or “maybe you could”

–41–

Python with Robots

Peer Review #2 Name:

Go through the rubric. Are all
requirements met? If not, list any
missing criteria

What do you like about the program –
be specific!

Give at least one suggestion. Begin
with “what if” or “maybe you could”

Review the comments. Then take time to improve or add to your project.

Post-Mission Reflection

What did you change in your project
after reading the feedback?

What do you like most about
programming?

What do you find the most challenging
about programming?

How have your attitudes or feelings
about computer science changed
during this mission pack?

–42–

Python with Robots

Final Project Rubric

Requirement No evidence ←—---→ Mastery

Programming
Conventions are
followed

● Variable names aren’t descriptive
● Function names aren’t descriptive
● Code blocks inconsistently indented
● Capital letters used
● Code is not organized into sections

● Variable names are descriptive
● Function names are descriptive
● Code blocks consistently indented
● Use of small letters (not capital)
● Code is organized into sections

Documentation and
Readability

● No comments are used.
● Code is difficult to read because no

blank lines were used, or too many
blank lines were included.

● Frequent and descriptive comments are
used regularly.

● Blank lines are used to help with readability.

Use of Variables and
constants

● “Magic Numbers” or literal values
are used in the code.

● Data isn’t tracked or updated (no
counters, states, conversions, etc.).

● Constants are used to eliminate “magic
numbers.”

● Variables are used for storing, keeping track
of and updating data.

● Global and local variables are used.

Use of Functions ● No plan or algorithm to follow.
● Everything in one main program.
● Long sections of code.
● Functions use all global or all local

variables.
● Functions don’t take parameters.

● Code is divided into smaller sections that
accomplish a task.

● Parameters are used as needed.
● Local and global variables are used as

needed.
● Functions return a value as needed.

Use of Inputs
Buttons and sensors

● Neither button is used for input.
● No sensors are read or used.

(line sensor, proximity sensor,
encoders, system temperature,
battery voltage, accelerometer)

● At least one button is used for input and
control.

● At least one sensor is used to give input.
● Conversion of raw data is performed as

needed.

Algorithms and
Programming

● No algorithms identified or used.
● Program performs the same for

every execution, without input.
● Lists and tuples are not utilized

when they would simplify the code.
● Debugging practices are not used

and code contains errors.

● Algorithms are used to manipulate data and
get results.

● Data is used to inform decisions.
● Lists and tuples are used to simplify data

collection and implementation.
● Debugging practices are used to correct

errors in code and logic.

Control Structures ● Program does not have any if or
if/else or if/elif/else statements.

● Program does not use any while
loops.

● Nested loops or if statements are
not used, or are used incorrectly.

● While loops and if statements are used to
control the flow of execution.

● Conditional and logical operators are used
appropriately.

● Nested while and if statements are used
when needed.

Use of Outputs
LEDs, speaker, motors

● No output is produced. ● One or more outputs are used to convey
data or perform a task.

Collaboration ● Students work independently or
uncooperatively on a team.

● Students work collaboratively with shared
tasks in their team to complete the project.

Synthesis / Purpose ● No clear purpose for the program.
● Program does not incorporate

learning across the mission pack.

● Purpose of the program is clearly stated.
● Program combines learning, concepts and

code from several missions.

Code Completion ● Code will not run or doesn’t
complete the task correctly.

● Code runs and accomplishes its task without
any errors, including logic.

–43–

Python with Robots

Appendix A: Required Resources

Computer Resources

Each student will need:
● A computer with the Chrome web browser.
● Chromebooks work great – just make sure they are up to date.
● Windows 10 or Windows 11 will work with no additional drivers needed.
● A current Mac OS will also work with no additional drivers needed.
● A USB port is used to connect and program the CodeBot. The CodeBot comes with a USB to USB-C cable. If

your laptop or computer has any other configuration, you will need a cable that has USB-C on one end.

Software Resources
● The interactive textbook and text editor is web-based. Make sure the website is not blocked.
● An email is required for signing in and saving work. It can be a gmail account, but any email will work.
● A per CodeBot device license is needed to access the curriculum.

Physical Resources

The missions can be completed by individual students or student pairs utilizing pair programming. It is possible to
share a CodeBot with more than one student or student pair in the same class, but that is not recommended. Each
student or student pair will still need a CodeBot and license for the curriculum.

All CodeBots and curriculum licenses can be used throughout the day with different classes and groups of students.

The CodeBot comes with a connecting USB cable and curriculum license. Other materials that will be needed
throughout the missions are:

● 4 AA batteries for each CodeBot.
● Black tape (or something similar) for creating lines on a white surface. Alternately, you can use light-colored

tape on a dark surface.
● Objects to place in front of the CodeBot for detection.
● Metric measuring stick.
● Different surfaces for friction. This could be tile, carpet, paper, white boards, etc.
● Different surfaces for reflection. They can be black, white and colored paper, or anything similar.
● Something to heat and cool the ‘bot (like a hair dryer and ice pack).

Notes

● When the CodeBot is plugged into a computer, it will appear as a USB mass storage device, similar to a flash
drive. This is not required for normal classroom use. So don’t worry if your school has a policy preventing
flash drives. You just close the pop-up window and continue.

● Occasionally Firia Labs will provide a software update that requires updating the core software on the
CodeBot. At those times you will need the flash drive feature to update the software, so you will need to use
a computer with USB drive access. Often a teacher’s computer is used to update all the CodeBot.

–44–

Python with Robots

Appendix B: Our Approach

Physical Computing and CodeSpace: a web-based professional-learning platform
Hardware brings code to life! Our versatile physical computing devices and peripherals get students excited
about code. Our CodeSpace learning environment enables them to step up to computer science with
real-world text-based Python coding. We include ready-to-teach standards-aligned curriculum with hands-on
projects that motivate students.

While there are some great online coding educational programs, we think our approach helps reach a
broader range of students. Our approach:

● Gets students focused “off-screen,” programming with physical hardware that connects and interacts
independently of their computers.

● Teaches a real, professional programming language. Even younger students appreciate that you can
make real money with these exact skills. If they can read, and they can type, they can code in
text-based Python.

● Gives students the tools to create anything they can imagine. Beyond projects and curriculum, we
give students a full-fledged software development environment. These are professional-strength
tools for writing code. Instead of a game-playing environment, students can “win with code” through
engaging hands-on projects and their own creativity.

Project Based Motivation
Students may wonder why they are learning to code. We all find that knowledge tastes so much better when
you’re hungry for it! Our goal is to motivate students with tangible, challenging and practical projects…that
just so happen to require coding to build. We want students to think about how they might code a given
project using what they already know. Only then do we teach just enough coding concepts to help them get
the job done. This approach gives reason and meaning to each concept, as well as relevant problem
context, which helps them retain it.

Type it In
Students are often tempted to just copy and paste from lesson examples. Prior to our extensive testing of the
curriculum on groups of 4th through 12th grade students, we were concerned that the typing burden might
be a problem. But we were willing to risk it.

● Typing in the code forces focus, dramatically improving retention.
● Keyboarding proficiency is key to expressiveness in using a programming language.
● Mistakes in structure, grammar, punctuation, capitalization, etc. are priceless learning opportunities.

Students learn an incredible amount from their mistakes. Our goal is to provide awesome safety-nets for
them, guiding them to iterate quickly through successive failed attempts to arrive at a working solution.
Extensive classroom observation has convinced us that the typing burden is not a problem. Students dive
right in, and they don’t have to be speed typists to make great progress in coding.

Exploration and Creativity
One of the great things about coding is the expressiveness it affords. Coding is a craft that takes time to
master, but with only a few basic tools you can start crafting some pretty amazing things! Before they even
complete the first project, some of your students will probably be experimenting “off-script” with some ideas
of their own. That’s a good thing! In every lesson we list some ideas for re-mixing each project’s concepts.
Remember that students are learning programming skills they can use to build any application – from
controlling a rocketship to choreographing dance moves. Nurture creativity, explore, and instill the joy of
coding!

–45–

Python with Robots

Appendix C: Teacher Resources

If you and your students are still fairly new to text-based coding, don’t worry! Like other physical devices and their
curriculum, we’ve designed the Python with Robots Mission Pack
and this curriculum guide to gently guide you from absolute beginner to a very comfortable level of proficiency.
Remember this – Don’t Panic🙂

We understand that tackling a subject like Computer Coding can be pretty intimidating. Fear not, we’ve built some
amazing tools to help you! As you begin this journey, know that the team at Firia Labs is here to help, too. If you run
into any problems, just let us know and we’ll get you back on track.

Classroom Preparation

Writing code can be like literary writing. Like developing writing skills requires individual practice, learning to
code requires students to compose and test their work individually. They need to make their own mistakes
and struggle through correcting them.

There is also a place for pair programming and collaboration in the coding classroom. Such practices foster
knowledge sharing, collective code ownership and code review “on the go”. It also gives students a chance
to communicate about what they are learning and reflect on their practices. It builds confidence and keeps
students focused on the task. Pair programming can result in better quality work with less errors, and keeps
teams “in the flow”.

You may need to think about a balance between independent work and pair programming to give your
students the best opportunities to succeed and truly engage in and enjoy programming.

Daily Routine

We recommend students work for at least 30 minutes each programming session. Adjust accordingly to your
day. Because of the time it takes to set up equipment, log in to computers, and then collect equipment at the
end of the learning period, it may take more time than you anticipate. Each lesson has a suggested time
frame. This range accounts for completing the basics to continuing with cross-curricular lessons or
extensions. Some missions may go even longer, depending on the time you have to spend in coding, the
length of time for each mission, the abilities of your students, etc.

This mission pack has a lot of flexibility built-in. You should complete each mission in order, but the amount of
time spent on each mission is up to you. A pacing calendar isn’t provided, given the flexibility and options for
the mission pack. But a suggested timeframe for each lesson is given to help you decide how best to plan
for the course in your class period with your seat minutes, ability level, other constraints, etc.

We recommend that students complete the Python with CodeX mission pack in advance, but it is not
required. For pacing considerations, the mission pack can be:

● A once-a-week activity for an elective class or after school club
● A drop-in unit in a required or elective course
● Extended to a 9-week or 18-week course

Extensions

Naturally students will progress at different speeds. The material is set up for independent study. You can
allow students to work ahead at their own pace, or slow down as needed.

As an alternative, you can keep the class together and have “high flyers” work on extensions to the missions.
Several suggestions are given for each mission.

–46–

Python with Robots

Extensions give students a chance to review their learning and add to their program in ways that interest
them. Many students will want to experiment with what they’ve learned, and we offer suggestions along the
way to spur this creative tinkering. Extensions are also an excellent opportunity for students to synthesize
their learning and create their own projects. We highly recommend including extensions into your pacing
calendar.

Cross Curricular

Another natural extension to each mission is tie-in the project to other subject areas. Suggestions are given
for each mission to extend student learning through a topic in another subject, such as language arts, math
and science. These extensions can be separate lessons that build from the mission, lessons given before
the mission, or just other ways to look at the project. If you teach multiple subjects or work with teachers in
other disciplines, you may want to consider adding in cross curricular extensions as well.

Managing a Class

Our CodeSpace learning platform makes it easy for you to create a class for your students to join, and
enables you to monitor their progress.

For help and step-by-step instructions, visit: https://learn.firialabs.com/curricula/code-space
If you are a Google Classroom teacher, you can import assignments from CodeSpace into your classes. For
instructions, go to “Virtual Tools with CodeSpace” in the Teacher Resources for Python with Robots.

If you need assistance for anything, please send an email to: support@firialabs.com

Here are the basics of the CodeSpace Teacher Dashboard

● Log in to CodeSpace and from HELP, select CLASS DASHBOARD
● Once you are in the dashboard, click + in the green bar, top right corner, to add a class.
● Assign each class a name, and allow members to join with a join code.
● You can assign Google Classroom as your LMS.
● After the class is created, you can edit the class, get a join code, disable joining, etc.
● You can delete a student using the “remove” function.
● Students go to CodeSpace and click the SELECT CLASS button.
● They can click the JOIN CLASS button and enter their join code for your class.
● The class will be activated and they are ready to start working!
● In the dashboard, you can see student progress, as a whole class and individually.

Class dashboard

Individual progress

–47–

https://learn.firialabs.com/curricula/code-space
https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials
mailto:support@firialabs.com

Python with Robots

Appendix D: Assessing Student Projects

The lessons give many opportunities for formative assessment. Any formative assessments you already use in your
classroom can be used with programming assignments. Each lesson has suggestions for assessment, including the
quizzes embedded in the interactive textbook, turning in completed programs, and Kahoot! Reviews.
Each unit has a vocabulary test and a concepts and coding test. Review Kahoot!s are available for each. Also, the
remix project for each unit can be used for assessment. A rubric checklist is included for each remix project.

Remix Projects
A generic project rubric is included on the next page. It can be used as a written form, or made into a digital
form. A CSTA Standards rubric is also provided on the learning portal (CodeX Project Rubric). Either rubric
may need to be modified for earlier projects, since not all standards are met with every mission. Make a copy
and edit as needed. You can also customize the rubric by adding custom requirements or assigning point
values before students begin.

Students should be given a copy of the rubric before beginning the project. Discuss the criteria and what it
means to earn mastery. It is beneficial to give students time to revise and improve their projects, as time
permits. Students who approach mastery may be motivated to improve, so decide what your classroom
policy and expectations will be and explain it to students early on. You may need to revise policies as you
get to know your students and observe how CodeSpace works for them. Flexibility is important!

Student-Teacher Conferencing
Student-teacher conferencing is integral to the learning process. This takes more time in class, but this is not
wasted time! Students will work harder and be more willing to do revisions, which is truly a workplace life
skill we’d like to instill in our students. To manage the process, it helps to have a submission window, rather
than one set due date. Once a student submits their work, call him/her up for a conference. Begin with an
open-ended question, like “Tell me about your project.” Then move on to the rubric. This may give you
insight into who did what, if working in pairs, and what challenges they encountered. As you conference
about the rubric, ask them what level of mastery they think they achieved, and why. Students are often more
critical of their work than they need to be. It’s a good time to emphasize challenges and mistakes are
learning opportunities rather than just being “wrong.” If time allows, students should be allowed to debug
and improve before a final submission of their work.

Peer Feedback
Before students submit a remix project, they should complete a peer review. This may take modeling a few
times before students do it correctly. Remind students that revising is just as important here as it is in English
class. These revisions can lead to great conversations during the conferencing process. They should go
through the rubric and test the program just as you would. This will give them the chance to find and correct
mistakes before doing a student-teacher conference. A peer review form is included in the document for
every remix. A sample peer review form is included in this appendix.

Early Finishers
Students who finish earlier than the submission deadline may enjoy having time to work on other unscripted
projects, and just trying things out. This is not wasted time! Learning through trial and error is time well-spent,
and we want to encourage curiosity for their motivation.

–48–

Python with Robots

Project Rubric

Requirement No evidence ←—---→ Mastery

Programming
Conventions are
followed

● Variable names aren’t descriptive
● Function names aren’t descriptive
● Code blocks inconsistently indented
● Capital letters used
● Code is not organized into sections

● Variable names are descriptive
● Function names are descriptive
● Code blocks consistently indented
● Use of small letters (not capital)
● Code is organized into sections

Documentation and
Readability

● No comments are used.
● Code is difficult to read because no

blank lines were used, or too many
blank lines were included.

● Frequent and descriptive comments are
used regularly.

● Blank lines are used to help with readability.

Use of Variables and
constants

● “Magic Numbers” or literal values
are used in the code.

● Data isn’t tracked or updated (no
counters, states, conversions, etc.).

● Constants are used to eliminate “magic
numbers.”

● Variables are used for storing, keeping track
of and updating data.

● Global and local variables are used.

Use of Functions ● No plan or algorithm to follow.
● Everything in one main program.
● Long sections of code.
● Functions use all global or all local

variables.
● Functions don’t take parameters.

● Code is divided into smaller sections that
accomplish a task.

● Parameters are used as needed.
● Local and global variables are used as

needed.
● Functions return a value as needed.

Use of Inputs
Buttons and sensors

● Neither button is used for input.
● No sensors are read or used.

(line sensor, proximity sensor,
encoders, system temperature,
battery voltage, accelerometer)

● At least one button is used for input and
control.

● At least one sensor is used to give input.
● Conversion of raw data is performed as

needed.

Algorithms and
Programming

● No algorithms identified or used.
● Program performs the same for

every execution, without input.
● Lists and tuples are not utilized

when they would simplify the code.
● Debugging practices are not used

and code contains errors.

● Algorithms are used to manipulate data and
get results.

● Data is used to inform decisions.
● Lists and tuples are used to simplify data

collection and implementation.
● Debugging practices are used to correct

errors in code and logic.

Control Structures ● Program does not have any if or
if/else or if/elif/else statements.

● Program does not use any while
loops.

● Nested loops or if statements are
not used, or are used incorrectly.

● While loops and if statements are used to
control the flow of execution.

● Conditional and logical operators are used
appropriately.

● Nested while and if statements are used
when needed.

Use of Outputs
LEDs, speaker, motors

● No output is produced. ● One or more outputs are used to convey
data or perform a task.

Collaboration ● Students work independently or
uncooperatively on a team.

● Students work collaboratively with shared
tasks in their team to complete the project.

Synthesis / Purpose ● No clear purpose for the program.
● Program does not incorporate

learning across the mission pack.

● Purpose of the program is clearly stated.
● Program combines learning, concepts and

code from several missions.

Code Completion ● Code will not run or doesn’t
complete the task correctly.

● Code runs and accomplishes its task without
any errors, including logic.

–49–

Python with Robots

Peer Review Form

Peer Reviewer Name:

Programmer being reviewed:

Project being reviewed:

Go through the rubric. Are all
requirements met? If not, list any
missing criteria

What do you like about the
program – be specific!

Give at least one suggestion.
Begin with “what if … or “maybe
you could …”

–50–

Python with Robots

Appendix E: Links to teacher materials

Code Solutions Teacher Resources for Python with Robots (Answer Keys)

Vocabulary by Mission Teacher Resources for Python with Robots (General Resources)

Python Code by Mission Teacher Resources for Python with Robots (General Resources)

Unit 1 Review Kahoots and Exams (Mission 2 & 3)

Mission 2 Review https://create.kahoot.it/share/firia-labs-codebot-mission-2/2925c213-a0c5-4ed4-8e
fa-45dc8d9db0e7

Mission 3 (Obj 1-6) https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-1-6/d53e34d5-56ab-
4962-a9e4-a6075bb90954

Mission 3 (Obj 7-9) https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-7-9/ced9ca2e-c1c1-4
779-8494-68e27eaa52db

Mission 3 (Obj 10-11) https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-10-11/68a85b45-3616
-4657-ad5d-472632455efd

Unit 1 Vocabulary Review https://create.kahoot.it/share/firia-labs-codebot-unit-1-vocab-review/0971b640-beb
c-4ca7-8745-54f7f814521b
(compilation of 13 terms from previous reviews, plus two more terms)

Unit 1 Concepts and Coding
Review

https://create.kahoot.it/share/firia-labs-codebot-unit-1-coding-review-missions-1-3/0
80d70c6-365a-4440-9a95-7bba5b59eaa9

Unit 1 Vocab Test Microsoft Forms (make a duplicate)

Unit 1 Coding Test Microsoft Forms (make a duplicate)

All Review & Test Questions Teacher Resources for Python with Robots (General Resources)

Unit 2 Review Kahoots and Exams (Mission 4-5)

Mission 4 (Obj 1-5) https://create.kahoot.it/share/firia-labs-codebot-mission-4-obj-1-5/274224e8-9c7f-4
2bb-a648-c9b334bb7cfe

Mission 4 (Obj 6-12) https://create.kahoot.it/share/firia-labs-codebot-mission-4-obj-6-12/1b909d22-067e
-4135-ac7f-bba9273c70ad

Mission 5 https://create.kahoot.it/share/firia-labs-codebot-mission-5/20d9499d-fe50-45a7-9f
2c-623975832277

Unit 2 Vocab Review https://create.kahoot.it/share/firia-labs-codebot-unit-2-vocabulary-review-missions-
4-5/456e14e6-6a4f-43b5-91b3-d6af75397a6c

Unit 2 Code Review https://create.kahoot.it/share/firia-labs-codebot-unit-2-coding-review-missions-4-5/
c68432d2-742d-4879-b4d6-3378aae37ddb

Unit 2 Vocab Test Microsoft Forms (make a duplicate)

Unit 2 Coding Test Microsoft Forms (make a duplicate)

All Review & Test Questions Teacher Resources for Python with Robots (General Resources)

–51–

https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials
https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials
https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials
https://create.kahoot.it/share/firia-labs-codebot-mission-2/2925c213-a0c5-4ed4-8efa-45dc8d9db0e7
https://create.kahoot.it/share/firia-labs-codebot-mission-2/2925c213-a0c5-4ed4-8efa-45dc8d9db0e7
https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-1-6/d53e34d5-56ab-4962-a9e4-a6075bb90954
https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-1-6/d53e34d5-56ab-4962-a9e4-a6075bb90954
https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-7-9/ced9ca2e-c1c1-4779-8494-68e27eaa52db
https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-7-9/ced9ca2e-c1c1-4779-8494-68e27eaa52db
https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-10-11/68a85b45-3616-4657-ad5d-472632455efd
https://create.kahoot.it/share/firia-labs-codebot-mission-3-obj-10-11/68a85b45-3616-4657-ad5d-472632455efd
https://create.kahoot.it/share/firia-labs-codebot-unit-1-vocab-review/0971b640-bebc-4ca7-8745-54f7f814521b
https://create.kahoot.it/share/firia-labs-codebot-unit-1-vocab-review/0971b640-bebc-4ca7-8745-54f7f814521b
https://create.kahoot.it/share/firia-labs-codebot-unit-1-coding-review-missions-1-3/080d70c6-365a-4440-9a95-7bba5b59eaa9
https://create.kahoot.it/share/firia-labs-codebot-unit-1-coding-review-missions-1-3/080d70c6-365a-4440-9a95-7bba5b59eaa9
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUOE8yNFFBTzc3QVJIUUw2Rks5SVRZTkM3My4u&sharetoken=L3TGIhhBvcIMRlkwJShW
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUMTlRN0dCTjUzNTE5RkZOWlBHSVRYSFBYQi4u&sharetoken=VqKjBU4zaYS4oLgxkWmD
https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials
https://create.kahoot.it/share/firia-labs-codebot-mission-4-obj-1-5/274224e8-9c7f-42bb-a648-c9b334bb7cfe
https://create.kahoot.it/share/firia-labs-codebot-mission-4-obj-1-5/274224e8-9c7f-42bb-a648-c9b334bb7cfe
https://create.kahoot.it/share/firia-labs-codebot-mission-4-obj-6-12/1b909d22-067e-4135-ac7f-bba9273c70ad
https://create.kahoot.it/share/firia-labs-codebot-mission-4-obj-6-12/1b909d22-067e-4135-ac7f-bba9273c70ad
https://create.kahoot.it/share/firia-labs-codebot-mission-5/20d9499d-fe50-45a7-9f2c-623975832277
https://create.kahoot.it/share/firia-labs-codebot-mission-5/20d9499d-fe50-45a7-9f2c-623975832277
https://create.kahoot.it/share/firia-labs-codebot-unit-2-vocabulary-review-missions-4-5/456e14e6-6a4f-43b5-91b3-d6af75397a6c
https://create.kahoot.it/share/firia-labs-codebot-unit-2-vocabulary-review-missions-4-5/456e14e6-6a4f-43b5-91b3-d6af75397a6c
https://create.kahoot.it/share/firia-labs-codebot-unit-2-coding-review-missions-4-5/c68432d2-742d-4879-b4d6-3378aae37ddb
https://create.kahoot.it/share/firia-labs-codebot-unit-2-coding-review-missions-4-5/c68432d2-742d-4879-b4d6-3378aae37ddb
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUMjdJOUFWR1dJNkpGS0hGSTBGT1pBVElQSy4u&sharetoken=PILrd6Q9jqAean5Hems3
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUQUU3WVBPMkNBVTlCVkk4N1UxTkNYWFJITi4u&sharetoken=iQnzUMafV3sPsIFSgvjx
https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials

Python with Robots

Unit 3: Missions 6-7

Mission 6 https://create.kahoot.it/share/firia-labs-codebot-mission-6/e�31058-8e4b-4a7d-82
39-32489c5462c9

Mission 7 https://create.kahoot.it/share/firia-labs-codebot-mission-7/d66d1ea8-5156-459d-ae
ea-d3038dc638b6

Unit 3 Vocab Review https://create.kahoot.it/share/firia-labs-codebot-unit-3-vocabulary-review-missions-
6-7/73b634fe-374f-4ed3-98d6-16a2d77c3807

Unit 3 Code Review https://create.kahoot.it/share/firia-labs-codebot-unit-3-coding-review-missions-6-7/
b276f5e7-8e82-479b-bf35-f1a93737b251

Unit 3 Vocab Test Microsoft Forms (make a duplicate)

Unit 3 Coding Test Microsoft Forms (make a duplicate)

All Review & Test Questions Teacher Resources for Python with Robots (General Resources)

Unit 4: Mission s 8-9

Mission 8 (1-6) https://create.kahoot.it/share/firia-labs-codebot-mission-8-obj-1-6/5af4f55a-fce5-41
34-b4bf-e2f8309d3�3

Mission 8 (7-14) https://create.kahoot.it/share/firia-labs-codebot-mission-8-obj-7-14/00c0584e-f8ea-
4651-a2a3-4db0a88e7a7c

Mission 9 (1-7) https://create.kahoot.it/share/firia-labs-codebot-mission-9-obj-1-7/fccc2ba6-c3ca-4f
6b-a131-44af6af14b80

Mission 9 (8-12) https://create.kahoot.it/share/firia-labs-codebot-mission-9-obj-8-12/aab9df2a-de3b-
47e2-9793-6b7ce15a5ae2

Unit 4 Vocab Review https://create.kahoot.it/share/firia-labs-codebot-unit-4-vocabulary-review-missions-
8-9/759f2751-5c37-4049-b07d-f27ad2704c00

Unit 4 Coding Review https://create.kahoot.it/share/firia-labs-codebot-unit-4-coding-review-missions-8-9/
53f79d01-600a-47e0-87ba-8a9c48d328c9

Unit 4 Vocab Test Microsoft Forms (make a duplicate)

Unit 4 Coding Test Microsoft Forms (make a duplicate)

All Review & Test Questions Teacher Resources for Python with Robots (General Resources)

–52–

https://create.kahoot.it/share/firia-labs-codebot-mission-6/efb31058-8e4b-4a7d-8239-32489c5462c9
https://create.kahoot.it/share/firia-labs-codebot-mission-6/efb31058-8e4b-4a7d-8239-32489c5462c9
https://create.kahoot.it/share/firia-labs-codebot-mission-7/d66d1ea8-5156-459d-aeea-d3038dc638b6
https://create.kahoot.it/share/firia-labs-codebot-mission-7/d66d1ea8-5156-459d-aeea-d3038dc638b6
https://create.kahoot.it/share/firia-labs-codebot-unit-3-vocabulary-review-missions-6-7/73b634fe-374f-4ed3-98d6-16a2d77c3807
https://create.kahoot.it/share/firia-labs-codebot-unit-3-vocabulary-review-missions-6-7/73b634fe-374f-4ed3-98d6-16a2d77c3807
https://create.kahoot.it/share/firia-labs-codebot-unit-3-coding-review-missions-6-7/b276f5e7-8e82-479b-bf35-f1a93737b251
https://create.kahoot.it/share/firia-labs-codebot-unit-3-coding-review-missions-6-7/b276f5e7-8e82-479b-bf35-f1a93737b251
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUMVNNS0xEMDUzMThKNjFCNk5ZVVVVMjNNTy4u&sharetoken=1H6qOqn9X9wgE6oU10Gw
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUQUxEN0FVSjdZWkJMWFM3U01ZSUdTT1A1WS4u&sharetoken=tvxEMHqWIzfyy7V2YDWj
https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials
https://create.kahoot.it/share/firia-labs-codebot-mission-8-obj-1-6/5af4f55a-fce5-4134-b4bf-e2f8309d3fb3
https://create.kahoot.it/share/firia-labs-codebot-mission-8-obj-1-6/5af4f55a-fce5-4134-b4bf-e2f8309d3fb3
https://create.kahoot.it/share/firia-labs-codebot-mission-8-obj-7-14/00c0584e-f8ea-4651-a2a3-4db0a88e7a7c
https://create.kahoot.it/share/firia-labs-codebot-mission-8-obj-7-14/00c0584e-f8ea-4651-a2a3-4db0a88e7a7c
https://create.kahoot.it/share/firia-labs-codebot-mission-9-obj-1-7/fccc2ba6-c3ca-4f6b-a131-44af6af14b80
https://create.kahoot.it/share/firia-labs-codebot-mission-9-obj-1-7/fccc2ba6-c3ca-4f6b-a131-44af6af14b80
https://create.kahoot.it/share/firia-labs-codebot-mission-9-obj-8-12/aab9df2a-de3b-47e2-9793-6b7ce15a5ae2
https://create.kahoot.it/share/firia-labs-codebot-mission-9-obj-8-12/aab9df2a-de3b-47e2-9793-6b7ce15a5ae2
https://create.kahoot.it/share/firia-labs-codebot-unit-4-vocabulary-review-missions-8-9/759f2751-5c37-4049-b07d-f27ad2704c00
https://create.kahoot.it/share/firia-labs-codebot-unit-4-vocabulary-review-missions-8-9/759f2751-5c37-4049-b07d-f27ad2704c00
https://create.kahoot.it/share/firia-labs-codebot-unit-4-coding-review-missions-8-9/53f79d01-600a-47e0-87ba-8a9c48d328c9
https://create.kahoot.it/share/firia-labs-codebot-unit-4-coding-review-missions-8-9/53f79d01-600a-47e0-87ba-8a9c48d328c9
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUQUhQSE5LR1UyNVhaMFlTQzdKWkNGTThBUy4u&sharetoken=8wvdKWtGMYiZuqZaaowx
https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAO__SjBvJpUNE9OQzQ1SVhDSllOMDRLUzY4UTJSSUI2Uy4u&sharetoken=T8hvpN0hO9aEZXhTQCx9
https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials

Python with Robots

Appendix F:
Lab Data Sheets

Lab Data Sheets for each mission are included in this section. You can
also access printer-friendly versions of each document at learn.firialabs.com

Mission 3 Obj. 7 Get Moving 54

Test Surfaces (can be used with several missions) 55

Mission 5 Obj. 2 Line Sensors 56

Mission 5 Obj. 2 Debug Console 57

MIssion 6 Obj. 2 REPL 58

Mission 6 Obj. 3, 4, 5 59

Mission 6 Obj. 5 Line Follower Reflection 60

Mission 7 Obj. 1 Presence Detector Experiment 61, 62

Mission 7 Obj. 2, 4, 7 63

Mission 7 Obj. 2 Power 64

Mission 7 Obj. 2 Threshold 65

Mission 7 Reflection 66

Mission 8 Obj. 9 Speedometer 67

Mission 8 Surface Test 68

Mission 8 Wheel Encoder Test 69

Mission 9 Obj 3, 6 70

Mission 9 Battery Test 71

Mission 9 Temperature Test 72

–53–

https://learn.firialabs.com/curricula/python-with-robots/teachers-resources/codebot-teacher-materials

Python with Robots

Python with Robots
Mission 3 Lab Data Sheet – OBJ 7 Name:

Obj 7 Get Moving: How far does the CodeBot move if both wheels have the same power, with a given delay?

Wheel power setting Sleep delay Distance traveled

Obj 8 Rotation Time: What angle does the CodeBot turn with a given wheel power and delay?

Left Wheel power Right Wheel power Sleep delay Angle and rotation (which way)

Planning Guide: Turn this paper over. Plan your navigation square by using a flowchart of pseudocode.

–54–

Python with Robots

Test Surface - Black

Test Surface - Gray

Test Surface - White

–55–

Python with Robots

Python with Robots
Mission 5 Lab Data Sheet – OBJ 2 Name:

Obj. 2 Line Sensors: What reading does a line sensor give for different materials?

Lighting
(room, light, dark, etc.)

Background
(carpet, tile, etc.)

Reflective surface
(black tape, paper, etc.)

Line sensor reading
Value between 0-4095

Planning Guide: Use this paper to plan your program with a flowchart or pseudocode.

–56–

Python with Robots

Python with Robots
Mission 5 Lab Data Sheet – OBJ 2 Name:

Obj. 2 The Debug Console:
Distance - How does the distance from the surface impact the line sensor read values?
Remember your constants - you must use the same surface throughout the test!

Distance (in cm) Analog Value (range 0-4095)

0.5 (distance from surface when sitting flat)

Surface - How does the reflectivity of the surface impact the line sensor read values?
Remember your constants - you must use the same distance throughout the test!

Surface description Analog Value (range 0-4095)

–57–

Python with Robots

Python with Robots
Mission 6 Lab Data Sheet – OBJ. 2 Name:

Obj. 2 Essential Question - How can we use REPL to interact with CodeBot's Python environment?

Complete the REPL practice below.

Command Return

check_lines(2500)

ls.read(0)

ls.read(1)

ls.read(2)

ls.read(3)

ls.read(4)

Now experiment with your own commands below!

Command Return

–58–

Python with Robots

Python with Robots
Mission 6 Lab Data Sheet – OBJ 3, 4, 5

Name:

Obj 3 (Line sensing): When will the sensors detect TRUE for a given threshold and reflecting surface?
Use REPL and the Console Panel. Try different thresholds and reflective surfaces. Write down the results.

Threshold (start with 2500) Reflective surface Sensor reading (true or false)

Obj 4 (Get a new threshold): For Objective #4, you need to determine a new threshold for the sensors. Using
REPL and the Console Panel, start with ls.check(0). See the range of raw values for your line/ground area. Try
different threshold values until you find the one that works best with ls.check().

Start with ls.check(0)
What is the range of raw values:

Now choose different values as a threshold: Result:

Obj 5 (Between the edges: For Objective #5, you want to experiment with different curves and turns.

Speed of ‘bot Turn code (L / R) Type of Curve Result:

–59–

Python with Robots

Python with Robots
Mission 6 Lab Data Sheet – OBJ 5 Name:

Obj 5 – Line Follower Reflection
Essential Question:What limitations does the LineFollow1 program have? Test your line follower and
answer the questions below.

What situations does this algorithm handle nicely?

What situations make it fail?

Why does it fail in those cases?

Collected Data

Line Position LEDs(vals)

Far Left

Center

Far Right

–60–

Python with Robots

Python with Robots
Mission 7 Lab Data Sheet – OBJ 1 Name:

Objective 1: Presence Detector
Essential Question -What are “ideal” conditions in which to use proximity sensors? How can we
program the ‘bot to adapt to its environment?

Purpose: The purpose of this lab is to determine ideal values for a given surface.

Procedure:
1. Partner A will run the ‘bot and program; Partner B will measure and record data.
2. Complete the lesson in CodeSpace and stop where it says to “experiment with the code”
3. Ensure you are keeping all conditions the same except for the variable you are testing.
4. With the program running, Partner A will line up the front edge of the ‘bot on the test surface.
5. Partner B will line up the edge of the meter stick at the same front edge. Keeping your body out

of the way of the sensors, place your white card outside its range and slowly bring it toward the
‘bot. Note when the proximity sensors detect the object. *Note-You may find that one sensor is
more sensitive than the other. Be careful to be consistent in your procedure.

6. Repeat 3 times to ensure you are getting similar results.
7. Partner B will note measurements in the data table.
8. Repeat for each condition

Materials:
● CodeBot, CodeSpace, USB cable
● Test surfaces (white, gray, black)
● Meter stick
● White notecard or paper

Hypothesis:

What are the constants in your experiment?

–61–

Python with Robots

Python with Robots
Mission 7 Lab Data Sheet – OBJ 1 Name:

Obj. 1 Presence Detector: Use the “Test Surface” color blocks to find the distance needed for the proximity
sensor to detect the surface color. You can also use other surfaces.

Color of surface Distance for True

Open space

Black

Gray

White

–62–

Python with Robots

Python with Robots
Mission 7 Lab Data Sheet – OBJ 2, 4, 7 Name:

Obj. 2 Power and Threshold: What power and threshold work best for an environment? Select one object.
Then use different power and threshold levels on different surfaces and see which ones work best.

Object / Surface Power setting Threshold setting Result

Obj. 4 Distance: After calibrating your ‘bot, you will want to see if the threshold chosen is working. Watch the
debug console to see what thresh values it picks up. Try different object distances to make sure it is working.

Object / Surface Distance Threshold setting Result

Obj. 7 Power: Define a function that calibrates the power of the flashlight. Then test the calibration on different
surfaces.

Object / Surface Power setting Threshold setting Result

–63–

Python with Robots

Python with Robots
Mission 7 Lab Data Sheet
OBJ 2 – Power

Name:

Testing Power
An emitter power level setting from 1 (low power) to 8 (high power) controls the brightness of
CodeBot’s IR “flashlight.”

power = 1
thresh = 75

Color of surface Distance (cm) for True

Open space

Black

Gray

White

power = 4
thresh = 75

Color of surface Distance (cm) for True

Open space

Black

Gray

White

power = 8
thresh = 75

Color of surface Distance (cm) for True

Open space

Black

Gray

White

–64–

Python with Robots

Python with Robots
Mission 7 Lab Data Sheet
OBJ 2 – Threshold

Name:

Testing Threshold
A detection threshold from 0%-100% controls how much light is needed for a True detection.

power = 4
thresh = 25

Color of surface Distance (cm) for True

Open space

Black

Gray

White

power = 4
thresh = 50

Color of surface Distance (cm) for True

Open space

Black

Gray

White

power = 4
thresh = 100

Color of surface Distance (cm) for True

Open space

Black

Gray

White

–65–

Python with Robots

Python with Robots
Mission 7 Lab Data Sheet – Reflection Name:

Discussion:

1. Was there anything inconsistent with the way you carried out your experiment? If so, what was it?

2. What environmental factors besides the color of the surface could affect the sensor readings?

Conclusion:

My hypothesis was supported / not supported by the experiment. How do you know?

What are your next steps? How could you share your knowledge with others?

–66–

Python with Robots

Python with Robots
Mission 8 Lab Data Sheet Name:

Obj. 9 Speedometer Part 1: Follow these steps:
1. Change the distance traveled to a constant 10 cm: drive(10)
2. Change the power value to a constant 50%

motors.run(LEFT, 50)
motors.run(RIGHT, 50)

3. Run the program 10 times and find the average of all 10 print values and record below.
4. Change the surface and repeat.

Floor Surface [LEFT] speeds AVG [RIGHT] speeds AVG

Obj. 9 Speedometer Part 2: Follow these steps:
1. Keep the distance traveled to a constant 10 cm: drive(10)
2. Choose ONE surface for the experiment and use it as a constant.
3. Use the same power for each wheel, but change the power incrementally.

motors.run(LEFT, 10)
motors.run(RIGHT, 10)

4. Run the program 10 times and find the average of all 10 print values and record below. Change the
power values by 10 each time.

Power [LEFT] speeds AVG [RIGHT] speeds AVG

10

20

30

40

50

60

70

80

90

100

–67–

Python with Robots

Python with Robots
Mission 8 Lab Data Sheet – Surface Test Name:

from botcore import *
from time import sleep

motors.enable(True)
motors.run(LEFT,50)
motors.run(RIGHT,50)
sleep(1.0)
motors.enable(False)

Surface Distance traveled (cm)

Wood

Vinyl

Tile

Carpet

other

–68–

Python with Robots

Python with Robots
Mission 8 Lab Data Sheet Name:

Wheel Encoder test

Open slot Closed slot (spoke)

Average: Average:

–69–

Python with Robots

Python with Robots
Mission 9 Lab Data Sheet – OBJ 3, 6 Name:

Obj. 3 Battery Tester with Load: Follow these steps:
1. Start a new file and create a test program as shown ->
2. Start with no LEDS turned on. Run the code.
3. Check the REPL console.
4. Record the battery voltage and percentage.
5. Repeat, lighting another LED each time.

LEDs turned on Voltage Percentage

0

1

2

3

4

5

6

7

8

Obj. 6 Temperature Check: Follow these steps:
1. Use your code from Objective 6
2. Start with sleep_ms(200) and record the average temperature
3. Repeat the experiment, changing the amount of delay. Try faster times and slower times.
4. Record the average temperature for each delay.

Amount of delay Average temperature

200

–70–

Python with Robots

Python with Robots
Mission 9 Lab Data Sheet – Battery Test Name:

from botcore import*
from time import sleep

def vbatt_load():
#Read battery voltage under load with user LEDs on/off
leds.user(0b00000000)
v = system.pwr_volts()
leds.user(0)

return v

Number of leds.user on My battery capacity %

0

1

2

3

4

5

6

7

8

–71–

Python with Robots

Python with Robots
Mission 9 Lab Data Sheet – Temperature Name:

from botcore import*
from time import sleep

while True:
temp = system.temp_F()
samples.append(temp)
if len(samples) == 5:
average = avg_list(samples)
samples.clear()
print ("Average temp: ", average)

Time Average Temperature (F/C)

0.0 sec

0.5 sec

1.0 sec

1.5 sec

2.0 sec

2.5 sec

3.0 sec

3.5 sec

4.0 sec

4.5 sec

5.0 sec

–72–

